Network Coding and Equidistant Subspace Codes

Alberto Ravagnani

University College Dublin

Ghent, December 5, 2017

What is network coding about?

Network coding: data transmission over (possibly noisy/adversarial) networks.

Sink

Sink

Sink
$m_{1}, m_{2}, \ldots, m_{k}$

What is network coding about?

Network coding: data transmission over (possibly noisy/adversarial) networks.

Applications of network coding

Patches distribution.

Applications of network coding

Streaming TV.

Modeling network communications

Network \rightsquigarrow directed acyclic multi-graph:

- The source sends messages $m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{F}_{q}^{n}$
- The sinks simb demand all the messages (multicast)
- What about the nodes * ?

Goal

Maximize the amount of messages that can be delivered to all sinks per single channel use (rate).
KEY IDEA: allow the nodes to recombine messages before forwarding them towards the sinks.

Min-cut bound

- \mathscr{N} the network
- \mathbf{S} the source
- $\mathbf{R}_{1}, \ldots, \mathbf{R}_{T}$ the sinks (receivers)

Theorem (Ahlswede, Cai, Li, Yeung, 2000)

The (multicast) rate of any communication over \mathscr{N} satisfies

$$
\text { rate } \leq \mu(\mathscr{N}):=\min _{i=1}^{T} \min -\operatorname{cut}\left(\mathbf{S}, \mathbf{R}_{i}\right),
$$

where min-cut $\left(\mathbf{S}, \mathbf{R}_{i}\right)$ is the min. \# of edges that one has to remove in \mathscr{N} to disconnect \mathbf{S} and \mathbf{R}_{i}.

Min-cut bound

- \mathscr{N} the network
- \mathbf{S} the source
- $\mathbf{R}_{1}, \ldots, \mathbf{R}_{T}$ the sinks (receivers)

Theorem (Ahlswede, Cai, Li, Yeung, 2000)

The (multicast) rate of any communication over \mathscr{N} satisfies

$$
\text { rate } \leq \mu(\mathscr{N}):=\min _{i=1}^{\top} \min -\operatorname{cut}\left(\mathbf{S}, \mathbf{R}_{i}\right),
$$

where min-cut $\left(\mathbf{S}, \mathbf{R}_{i}\right)$ is the min. \# of edges that one has to remove in \mathscr{N} to disconnect \mathbf{S} and \mathbf{R}_{i}.

Can we design nodes operations (network code) such that the bound is achieved?

Min-cut bound

- \mathscr{N} the network
- \mathbf{S} the source
- $\mathbf{R}_{1}, \ldots, \mathbf{R}_{T}$ the sinks (receivers)

Theorem (Ahlswede, Cai, Li, Yeung, 2000)

The (multicast) rate of any communication over \mathscr{N} satisfies

$$
\text { rate } \leq \mu(\mathscr{N}):=\min _{i=1}^{T} \min -\operatorname{cut}\left(\mathbf{S}, \mathbf{R}_{i}\right),
$$

where min-cut $\left(\mathbf{S}, \mathbf{R}_{i}\right)$ is the min. \# of edges that one has to remove in \mathscr{N} to disconnect \mathbf{S} and \mathbf{R}_{i}.

Can we design nodes operations (network code) such that the bound is achieved? YES!

In fact, linear operations suffice!

The "Butterfly" network

This strategy is optimal: there is no better strategy!
More generally...

Max-flow-min-cut theorem

Assume that:

- the source S sends messages $m_{1}, \ldots, m_{k} \in \mathbb{F}_{q}^{n}$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- the nodes forward the output of these operations,
- receiver \mathbf{R} obtains vectors n_{1}, \ldots, n_{s} on the incoming edges.

Max-flow-min-cut theorem

Assume that:

- the source \mathbf{S} sends messages $m_{1}, \ldots, m_{k} \in \mathbb{F}_{q}^{n}$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- the nodes forward the output of these operations,
- receiver \mathbf{R} obtains vectors n_{1}, \ldots, n_{s} on the incoming edges.

Then we can write:

$$
\left[\begin{array}{c}
n_{1} \\
n_{2} \\
\vdots \\
n_{s}
\end{array}\right]=G(\mathbf{R}) \cdot\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{k}
\end{array}\right]
$$

where $G(\mathbf{R})$ is the global transfer matrix at \mathbf{R}, describing all linear nodes operations.

Max-flow-min-cut theorem

Assume that:

- the source \mathbf{S} sends messages $m_{1}, \ldots, m_{k} \in \mathbb{F}_{q}^{n}$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- the nodes forward the output of these operations,
- receiver \mathbf{R} obtains vectors n_{1}, \ldots, n_{s} on the incoming edges.

Then we can write:

$$
\left[\begin{array}{c}
n_{1} \\
n_{2} \\
\vdots \\
n_{s}
\end{array}\right]=G(\mathbf{R}) \cdot\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{k}
\end{array}\right],
$$

where $G(\mathbf{R})$ is the global transfer matrix at \mathbf{R}, describing all linear nodes operations.

Theorem (Li, Yeung, Cai, 2002)

Assume $k=\mu(\mathscr{N})$. There exist linear nodes operations such that $G(\mathbf{R})$ is a $k \times k$ invertible matrix for each receiver \mathbf{R}, provided that q is sufficiently large.

Network decoding at each receiver \mathbf{R} : multiply by $G(\mathbf{R})^{-1}$.

Back to the Butterfly network

Back to the Butterfly network

Receiver \mathbf{R}_{1} obtains

$$
\left[\begin{array}{c}
m_{1} \\
m_{1}+m_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right] .
$$

Thus

$$
G\left(\mathbf{R}_{1}\right)=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

Random network coding

Recall:

- the source organizes the messages $m_{1}, \ldots, m_{k} \in \mathbb{F}_{q}^{n}$ in the rows of a message matrix M,
- if no errors occur, then receiver \mathbf{R} obtains $Y=G(\mathbf{R}) \cdot M$.

If the network \mathscr{N} is large, or time-dependent, then the $G(\mathbf{R})$'s may be difficult to design.

Random network coding

Recall:

- the source organizes the messages $m_{1}, \ldots, m_{k} \in \mathbb{F}_{q}^{n}$ in the rows of a message matrix M,
- if no errors occur, then receiver \mathbf{R} obtains $Y=G(\mathbf{R}) \cdot M$.

If the network \mathscr{N} is large, or time-dependent, then the $G(\mathbf{R})$'s may be difficult to design.

Theorem (Ho, Médard, Kötter, Karger, Effros, Shi, Leong, 2006)

Assume $k=\mu(\mathscr{N})$. If each node performs random linear operations on the received inputs, then

$$
\lim _{q \rightarrow \infty} \mathbb{P}[G(\mathbf{R}) \text { is left-invertible for all } \mathbf{R}]=1
$$

Random network coding

Recall:

- the source organizes the messages $m_{1}, \ldots, m_{k} \in \mathbb{F}_{q}^{n}$ in the rows of a message matrix M,
- if no errors occur, then receiver \mathbf{R} obtains $Y=G(\mathbf{R}) \cdot M$.

If the network \mathscr{N} is large, or time-dependent, then the $G(\mathbf{R})$'s may be difficult to design.

Theorem (Ho, Médard, Kötter, Karger, Effros, Shi, Leong, 2006)

Assume $k=\mu(\mathscr{N})$. If each node performs random linear operations on the received inputs, then

$$
\lim _{q \rightarrow \infty} \mathbb{P}[G(R) \text { is left-invertible for all } R]=1
$$

If $G(\mathbf{R})$ is left-invertible, what do M and $G(\mathbf{R}) \cdot M$ have in common? The row-space!
IDEA (Kötter, Kschischang, 2008): define the message to be rowsp(M).

Random network coding

Recall:

- the source organizes the messages $m_{1}, \ldots, m_{k} \in \mathbb{F}_{q}^{n}$ in the rows of a message matrix M,
- if no errors occur, then receiver \mathbf{R} obtains $Y=G(\mathbf{R}) \cdot M$.

If the network \mathscr{N} is large, or time-dependent, then the $G(\mathbf{R})$'s may be difficult to design.

Theorem (Ho, Médard, Kötter, Karger, Effros, Shi, Leong, 2006)

Assume $k=\mu(\mathscr{N})$. If each node performs random linear operations on the received inputs, then

$$
\lim _{q \rightarrow \infty} \mathbb{P}[G(\mathbf{R}) \text { is left-invertible for all } \mathbf{R}]=1
$$

If $G(\mathbf{R})$ is left-invertible, what do M and $G(\mathbf{R}) \cdot M$ have in common? The row-space!
IDEA (Kötter, Kschischang, 2008): define the message to be rowsp(M).
$1 \leq k<n$ integers, $\quad q$ prime power, $\quad \mathscr{G}_{q}(k, n)$ set of k-dimensional subspaces of \mathbb{F}_{q}^{n}.

Definition

A subspace code of length n and dimension k is a subset $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ with $|\mathscr{C}| \geq 2$. The elements of \mathscr{C} are the "legitimate" message spaces.

Codes for networks

$1 \leq k<n$ integers, $\quad q$ prime power, $\quad \mathscr{G}_{q}(k, n)$ set of k-dimensional subspaces of \mathbb{F}_{q}^{n}.
Definition (Kötter-Kschischang, 2008)
A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ with $|\mathscr{C}| \geq 2$. Elements of \mathscr{C} : codewords.

Codes for networks

$1 \leq k<n$ integers, $\quad q$ prime power, $\quad \mathscr{G}_{q}(k, n)$ set of k-dimensional subspaces of \mathbb{F}_{q}^{n}.
Definition (Kötter-Kschischang, 2008)
A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ with $|\mathscr{C}| \geq 2$. Elements of \mathscr{C} : codewords.

Goal of communication scheme
Message transmission + Error correction.
(1) $V=\operatorname{Span}_{\mathbb{F}_{q}}\left\{m_{1}, m_{2}, \ldots, m_{k}\right\} \in \mathscr{C}$ is sent...

Codes for networks

$1 \leq k<n$ integers, $\quad q$ prime power, $\quad \mathscr{G}_{q}(k, n)$ set of k-dimensional subspaces of \mathbb{F}_{q}^{n}.

Definition (Kötter-Kschischang, 2008)

A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ with $|\mathscr{C}| \geq 2$. Elements of \mathscr{C} : codewords.

Goal of communication scheme

Message transmission + Error correction.
(1) $V=\operatorname{Span}_{\mathbb{F}_{q}}\left\{m_{1}, m_{2}, \ldots, m_{k}\right\} \in \mathscr{C}$ is sent...

(2) $\ldots V \oplus E$ is received, $E \subseteq \mathbb{F}_{q}^{n}$ subspace \rightsquigarrow number of errors $:=\operatorname{dim}_{\mathbb{F}_{q}}(E)$.

Decoding: recover V from $V \oplus E$.

Subspace codes

$1 \leq k<n$ integers, $\quad q$ prime power, $\quad \mathscr{G}_{q}(k, n)$ set of k-dimensional subspaces of \mathbb{F}_{q}^{n}.
Definition (Kötter, Kschischang, 2008)
A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ with $|\mathscr{C}| \geq 2$. Elements of \mathscr{C} : codewords.

Subspace codes

$1 \leq k<n$ integers, $\quad q$ prime power, $\quad \mathscr{G}_{q}(k, n)$ set of k-dimensional subspaces of \mathbb{F}_{q}^{n}.
Definition (Kötter, Kschischang, 2008)
A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ with $|\mathscr{C}| \geq 2$. Elements of \mathscr{C} : codewords.
(1) Subspace distance on $\mathscr{G}_{q}(k, n): \quad d(V, W):=2 k-2 \operatorname{dim}(V \cap W), \quad V, W \in \mathscr{G}_{q}(k, n)$.
(2) Minimum distance of $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n): d(\mathscr{C}):=\min \{d(V, W): V, W \in \mathscr{C}, V \neq W\}$.

Subspace codes

$1 \leq k<n$ integers, $\quad q$ prime power, $\quad \mathscr{G}_{q}(k, n)$ set of k-dimensional subspaces of \mathbb{F}_{q}^{n}.
Definition (Kötter, Kschischang, 2008)
A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ with $|\mathscr{C}| \geq 2$. Elements of \mathscr{C} : codewords.
(1) Subspace distance on $\mathscr{G}_{q}(k, n): d(V, W):=2 k-2 \operatorname{dim}(V \cap W), \quad V, W \in \mathscr{G}_{q}(k, n)$.
(2) Minimum distance of $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n): d(\mathscr{C}):=\min \{d(V, W): V, W \in \mathscr{C}, V \neq W\}$.
... new research directions in Coding Theory:

- Bounds on the cardinality of subspace codes (for given minimum distance).
- Construction of subspace codes.
- Decoding algorithms.
- Connections to Projective Geometry.
- Applications to Cryptography.

Bounds and constructions

Singleton-type bound:

Theorem

Assume $n \geq 2 k$. Let $\mathscr{C} \subseteq \mathscr{C}_{q}(k, n)$ be a subspace code of minimum distance $d(\mathscr{C})=2 \delta$. Then

$$
|\mathscr{C}|<4 \cdot q^{(n-k)(k-\delta+1)} .
$$

Bounds and constructions

Singleton-type bound:

Theorem

Assume $n \geq 2 k$. Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be a subspace code of minimum distance $d(\mathscr{C})=2 \delta$. Then

$$
|\mathscr{C}|<4 \cdot q^{(n-k)(k-\delta+1)} .
$$

Reed-Solomon-like codes:

Theorem

Assume $n \geq 2 k$. For every $1 \leq \delta \leq k$ there exists a subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ of minimum distance $d(\mathscr{C})=2 \delta$ and

$$
|\mathscr{C}|=q^{(n-k)(k-\delta+1)} .
$$

Bounds and constructions

Singleton-type bound:

Theorem

Assume $n \geq 2 k$. Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be a subspace code of minimum distance $d(\mathscr{C})=2 \delta$. Then

$$
|\mathscr{C}|<4 \cdot q^{(n-k)(k-\delta+1)} .
$$

Reed-Solomon-like codes:

Theorem

Assume $n \geq 2 k$. For every $1 \leq \delta \leq k$ there exists a subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ of minimum distance $d(\mathscr{C})=2 \delta$ and

$$
|\mathscr{C}|=q^{(n-k)(k-\delta+1)} .
$$

Reed-Solomon-like codes are optimal, up to constant factor.
Efficient decoding algorithms are known.

Equidistant subspace codes

Definition

A subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is equidistant is $d(V, W)$ is constant for all $V \neq W \in \mathscr{C}$. I.e., $c:=\operatorname{dim}(V \cap W)$ is constant (\mathscr{C} is c-intersecting).

Equidistant subspace codes

Definition

A subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is equidistant is $d(V, W)$ is constant for all $V \neq W \in \mathscr{C}$.
I.e., $c:=\operatorname{dim}(V \cap W)$ is constant (\mathscr{C} is c-intersecting).

Problems

(1) Describe properties of large equidistant codes.
(2) Construct large sets of equidistant codes (and decode them).

Equidistant subspace codes

Definition

A subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is equidistant is $d(V, W)$ is constant for all $V \neq W \in \mathscr{C}$.
I.e., $c:=\operatorname{dim}(V \cap W)$ is constant (\mathscr{C} is c-intersecting).

Problems

(1) Describe properties of large equidistant codes.
(2) Construct large sets of equidistant codes (and decode them).

Focus on: asymptotic/general structural properties.

Sunflowers

Definition

An equidistant code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is a sunflower if there is $C \subseteq \mathbb{F}_{q}^{n}$ st. $V \cap W=C$ for all $V \neq W \in \mathscr{C}$. The space C is the center.

Sunflowers

Definition

An equidistant code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is a sunflower if there is $C \subseteq \mathbb{F}_{q}^{n}$ st. $V \cap W=C$ for all $V \neq W \in \mathscr{C}$. The space C is the center.

Theorem (Deza, Etzion-Raviv)

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be a c-intersecting equidistant codes. Assume

$$
|\mathscr{C}| \geq\left(\frac{q^{k}-q^{c}}{q-1}\right)^{2}+\frac{q^{k}-q^{c}}{q-1}+1
$$

Then \mathscr{C} is a sunflower.

Sunflowers and partial spreads

Definition

A partial k-spread in \mathbb{F}_{q}^{n} is a set $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ such that $U \cap V=\{0\}$ for all $U, V \in \mathscr{C}$ with $U \neq V$.

There exists a 1-to-1 correspondence:
c-intersecting sunflowers in $\mathbb{F}_{q}^{n} \quad$ partial $(k-c)$-spreads in \mathbb{F}_{q}^{n-c}

Proposition (Gorla, R.)

Let $e_{q}(k, n, c):=\max \left\{|\mathscr{C}|: \mathscr{C} \subseteq \mathscr{G}_{q}(k, n)\right.$ is a sunflower with center of dimension $\left.c\right\}$.
Denote by r be the reminder of the division of $n-c$ by $k-c$.
Then:

$$
\frac{q^{n-c}-q^{r}}{q^{k-c}-1}-q^{r}+1 \leq e_{q}(k, n, c) \leq \frac{q^{n-c}-q^{r}}{q^{k-c}-1} .
$$

Classification of sunflower codes

We classify equidistant codes of maximum cardinality for most values of the parameters.

Definition

Denote by V^{\perp} the orthogonal of a subspace $V \subseteq \mathbb{F}_{q}^{n}$ w.r. to the standard inner product of \mathbb{F}_{q}^{n}. The orthogonal of a subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is $\mathscr{C}^{\perp}:=\left\{V^{\perp}: V \in \mathscr{C}\right\}$.

Classification of sunflower codes

We classify equidistant codes of maximum cardinality for most values of the parameters.

Definition

Denote by V^{\perp} the orthogonal of a subspace $V \subseteq \mathbb{F}_{q}^{n}$ w.r. to the standard inner product of \mathbb{F}_{q}^{n}. The orthogonal of a subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is $\mathscr{C}^{\perp}:=\left\{V^{\perp}: V \in \mathscr{C}\right\}$.

Theorem (Gorla, R.)

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an equidistant c-intersecting code of maximum cardinality. Assume that at least one of the following holds:

- $c \in\{0, k-1,2 k-n\}$,
- $q \gg 0$ and $n \geq 3 k-1$,
- $q \gg 0$ and $n \leq(3 k+1) / 2$.

Then either \mathscr{C} is a sunflower, or \mathscr{C}^{\perp} is a sunflower (mutually exclusive properties).

Classification of sunflower codes

We classify equidistant codes of maximum cardinality for most values of the parameters.

Definition

Denote by V^{\perp} the orthogonal of a subspace $V \subseteq \mathbb{F}_{q}^{n}$ w.r. to the standard inner product of \mathbb{F}_{q}^{n}. The orthogonal of a subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is $\mathscr{C} \mathscr{C}^{\perp}:=\left\{V^{\perp}: V \in \mathscr{C}\right\}$.

Theorem (Gorla, R.)

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an equidistant c-intersecting code of maximum cardinality. Assume that at least one of the following holds:

- $c \in\{0, k-1,2 k-n\}$,
- $q \gg 0$ and $n \geq 3 k-1$,
- $q \gg 0$ and $n \leq(3 k+1) / 2$.

Then either \mathscr{C} is a sunflower, or \mathscr{C}^{\perp} is a sunflower (mutually exclusive properties).
There are counterexamples in the range $(3 k+1) / 2<n<3 k-1$ for all q, e.g.

Proposition (Gorla, R.)

An equidistant 1 -intersecting code $\mathscr{C} \subseteq \mathscr{G}_{q}(3,6)$ of maximum cardinality is never a sunflower.

Construction of sunflower codes

$p \in \mathbb{F}_{q}[x]$ irreducible, monic; $k:=\operatorname{deg}(p) ; \quad p=\sum_{i=0}^{k} p_{i} x^{i} . \quad$ Companion matrix of p :

$$
M(p):=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & & & \ddots & \vdots \\
0 & 0 & 0 & & 1 \\
-p_{0} & -p_{1} & -p_{2} & \cdots & -p_{k-1}
\end{array}\right]
$$

We have $\mathbb{F}_{q}[M(p)] \cong \mathbb{F}_{q^{k}}$.

Construction of sunflower codes

Theorem

- Take integers $1 \leq k<n$ and $\min \{0,2 k-n\} \leq c \leq k-1$.
- Write $n-c=h(k-c)+r$, with $0 \leq r \leq k-c-1$ and $h \geq 2$.
- Choose irreducible monic polynomials $p, p^{\prime} \in \mathbb{F}_{q}[x]$ of degree $k-c$ and $k-c+r$, resp.
- Set $P:=\mathrm{M}(p)$ and $P^{\prime}:=\mathrm{M}\left(p^{\prime}\right)$.
- For $1 \leq i \leq h-1$ let $\mathscr{M}_{i}\left(p, p^{\prime}\right)$ be the set of $k \times n$ matrices of the form

$$
\left[\begin{array}{ccccccccc}
I_{c} & 0_{c \times(k-c)} & \cdots & \cdots & \cdots & \cdots & \cdots & 0_{c \times(k-c)} & 0_{c \times(k-c+r)} \\
0_{(k-c) \times c} & 0_{k-c} & \cdots & 0_{k-c} & I_{k-c} & A_{i+1} & \cdots & A_{h-1} & A_{[k-c]}
\end{array}\right],
$$

where we have $i-2$ consecutive copies of $0_{k-c}, A_{i+1}, \ldots, A_{h-1} \in \mathbb{F}_{q}[P], A \in \mathbb{F}_{q}\left[P^{\prime}\right]$, and $A_{[k-c]}$ denotes the last $k-c$ rows of A.
The set

$$
\begin{aligned}
\mathscr{C}:=\bigcup_{i=1}^{h-1} & \left\{\operatorname{rowsp}(M): M \in \mathscr{M}_{i}\left(p, p^{\prime}\right)\right\} \\
& \cup\left\{\operatorname{rowsp}\left[\begin{array}{cccccc}
I_{c} & 0_{c \times(k-c)} & \cdots & 0_{c \times(k-c)} & 0_{c \times(k-c+r)} & 0_{c \times(k-c)} \\
0_{(k-c) \times c} & 0_{k-c} & \cdots & 0_{k-c} & 0_{(k-c) \times(k-c+r)} & I_{k-c}
\end{array}\right]\right\}
\end{aligned}
$$

is a sunflower in $\mathscr{G}_{q}(k, n)$ of cardinality $|\mathscr{C}|=\frac{q^{n-c}-q^{r}}{q^{k-c}-1}-q^{r}+1$.

Sunflower codes

Theorem

Sunflower codes:
(1) have efficient decoding algorithm,
(2) are asymptotically optimal as sunflowers, and therefore as equidistant codes for most parameters (classification).

Sunflower codes

Theorem

Sunflower codes:
(1) have efficient decoding algorithm,
(2) are asymptotically optimal as sunflowers, and therefore as equidistant codes for most parameters (classification).

Other problems we investigated

(1) Classify optimal equidistant codes \mathscr{C} such that both \mathscr{C} and $\mathscr{C}{ }^{\perp}$ are sunflowers.
(2) Estimate the number of distinct intersections of a non-sunflower equidistant codes.

Sunflower codes

Theorem

Sunflower codes:
(1) have efficient decoding algorithm,
(2) are asymptotically optimal as sunflowers, and therefore as equidistant codes for most parameters (classification).

Other problems we investigated

(1) Classify optimal equidistant codes \mathscr{C} such that both \mathscr{C} and \mathscr{C}^{\perp} are sunflowers.
(2) Estimate the number of distinct intersections of a non-sunflower equidistant codes.

Recall...

Theorem (Gorla, R.)

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an equidistant c-intersecting code of maximum cardinality. Assume that at least one of the following holds:

- $c \in\{0, k-1,2 k-n\}$,
- $q \gg 0$ and $n \geq 3 k-1$,
- $q \gg 0$ and $n \leq(3 k+1) / 2$.

Then either \mathscr{C} is a sunflower, or \mathscr{C}^{\perp} is a sunflower (mutually exclusive properties).

More properties of equidistant codes

Define the span of a subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ as $\operatorname{span}(\mathscr{C}):=\sum U \in \mathscr{C} U \subseteq \mathbb{F}_{q}^{n}$.

Lemma

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an equidistant code of maximum cardinality. Then $\operatorname{span}(\mathscr{C})=\mathbb{F}_{q}^{n}$.

More properties of equidistant codes

Define the span of a subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ as $\operatorname{span}(\mathscr{C}):=\sum_{U \in \mathscr{C}} U \subseteq \mathbb{F}_{q}^{n}$.

Lemma

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an equidistant code of maximum cardinality. Then $\operatorname{span}(\mathscr{C})=\mathbb{F}_{q}^{n}$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an equidistant c-intersecting code of maximum cardinality. Assume $n>2 k-c$. Then \mathscr{C}^{\perp} is not a sunflower.

More properties of equidistant codes

Define the span of a subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ as $\operatorname{span}(\mathscr{C}):=\sum_{U \in \mathscr{C}} U \subseteq \mathbb{F}_{q}^{n}$.

Lemma

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an equidistant code of maximum cardinality. Then $\operatorname{span}(\mathscr{C})=\mathbb{F}_{q}^{n}$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an equidistant c-intersecting code of maximum cardinality. Assume $n>2 k-c$. Then \mathscr{C}^{\perp} is not a sunflower.
(1) Assume that \mathscr{C}^{\perp} is a sunflower. The center of $\mathscr{C}{ }^{\perp}$, say D, has $\operatorname{dim}(D)=n-2 k+c>0$.
(2) We have $U^{\perp} \supseteq D$ for all $U \in \mathscr{C}$, and thus $U \subseteq D^{\perp}$ for all $U \in \mathscr{C}$.
(3) It follows $\operatorname{span}(\mathscr{C}) \subseteq D^{\perp} \subsetneq \mathbb{F}_{q}^{n}$, contradicting the lemma.

More properties of equidistant codes

Define the span of a subspace code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ as $\operatorname{span}(\mathscr{C}):=\sum_{U \in \mathscr{C}} U \subseteq \mathbb{F}_{q}^{n}$.

Lemma

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an equidistant code of maximum cardinality. Then $\operatorname{span}(\mathscr{C})=\mathbb{F}_{q}^{n}$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an equidistant c-intersecting code of maximum cardinality. Assume $n>2 k-c$. Then \mathscr{C}^{\perp} is not a sunflower.
(1) Assume that \mathscr{C}^{\perp} is a sunflower. The center of $\mathscr{C}{ }^{\perp}$, say D, has $\operatorname{dim}(D)=n-2 k+c>0$.
(2) We have $U^{\perp} \supseteq D$ for all $U \in \mathscr{C}$, and thus $U \subseteq D^{\perp}$ for all $U \in \mathscr{C}$.
(3) It follows $\operatorname{span}(\mathscr{C}) \subseteq D^{\perp} \subsetneq \mathbb{F}_{q}^{n}$, contradicting the lemma.

Corollary

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be a c-intersecting equidistant code of maximum cardinality. TFAE:

- \mathscr{C} and $\mathscr{C} \perp$ are both sunflowers,
- $c=0$ and $n=2 k$,
- $n=2 k$ and both \mathscr{C} and \mathscr{C}^{\perp} are spreads.

Centers of equidistant codes

The set of centers of an equidistant code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is $T(\mathscr{C}):=\{U \cap V: U, V \in \mathscr{C}, U \neq V\}$, and the number of centers of \mathscr{C} is $t(\mathscr{C}):=|T(\mathscr{C})|$.

Centers of equidistant codes

The set of centers of an equidistant code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is $T(\mathscr{C}):=\{U \cap V: U, V \in \mathscr{C}, U \neq V\}$, and the number of centers of \mathscr{C} is $t(\mathscr{C}):=|T(\mathscr{C})|$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an c-intersecting equidistant code. One of the following properties holds:
(1) \mathscr{C} is a sunflower, or
(2) $t(\mathscr{C}) \geq|\mathscr{C}| \frac{q^{c}-q^{c-1}}{q^{k}-q^{c-1}}$.

Centers of equidistant codes

The set of centers of an equidistant code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is $T(\mathscr{C}):=\{U \cap V: U, V \in \mathscr{C}, U \neq V\}$, and the number of centers of \mathscr{C} is $t(\mathscr{C}):=|T(\mathscr{C})|$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an c-intersecting equidistant code. One of the following properties holds:
(1) \mathscr{C} is a sunflower, or
(2) $t(\mathscr{C}) \geq|\mathscr{C}| \frac{q^{c}-q^{c-1}}{q^{k}-q^{c-1}}$.

Corollary (asymptotic estimate of the number of centers)

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be a c-intersecting non-sunflower equidistant code of maximum cardinality. Denote by r the remainder of the division of $n-c$ by $k-c$. Then

$$
t(\mathscr{C}) \geq\left(\frac{q^{n-c}-q^{r}}{q^{k-c}-1}-q^{r}+1\right) \frac{q^{c}-q^{c-1}}{q^{k}-q^{c-1}} .
$$

In particular, $\lim _{q \rightarrow \infty} t(\mathscr{C}) q^{-(n-2 k+c)} \in[1,+\infty]$.

Centers of equidistant codes

The set of centers of an equidistant code $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ is $T(\mathscr{C}):=\{U \cap V: U, V \in \mathscr{C}, U \neq V\}$, and the number of centers of \mathscr{C} is $t(\mathscr{C}):=|T(\mathscr{C})|$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be an c-intersecting equidistant code. One of the following properties holds:
(1) \mathscr{C} is a sunflower, or
(2) $t(\mathscr{C}) \geq|\mathscr{C}| \frac{q^{c}-q^{c-1}}{q^{k}-q^{c-1}}$.

Corollary (asymptotic estimate of the number of centers)
Let $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ be a c-intersecting non-sunflower equidistant code of maximum cardinality. Denote by r the remainder of the division of $n-c$ by $k-c$. Then

$$
t(\mathscr{C}) \geq\left(\frac{q^{n-c}-q^{r}}{q^{k-c}-1}-q^{r}+1\right) \frac{q^{c}-q^{c-1}}{q^{k}-q^{c-1}} .
$$

In particular, $\lim _{q \rightarrow \infty} t(\mathscr{C}) q^{-(n-2 k+c)} \in[1,+\infty]$.

Thank you very much for your attention!

