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What is network coding about?

Network coding: data transmission over (possibly noisy/adversarial) networks.
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Applications of network coding

Patches distribution.
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Applications of network coding

Streaming TV.
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Modeling network communications

Network  directed acyclic multi-graph:

The source sends messages m1,m2, ...,mk ∈ Fn
q

The sinks demand all the messages (multicast)

What about the nodes ?

Goal

Maximize the amount of messages that can be delivered to all sinks per single channel use (rate).

KEY IDEA: allow the nodes to recombine messages before forwarding them towards the sinks.
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Min-cut bound

N the network

S the source

R1, ...,RT the sinks (receivers)

Theorem (Ahlswede, Cai, Li, Yeung, 2000)

The (multicast) rate of any communication over N satisfies

rate≤ µ(N ) :=
T

min
i=1

min-cut(S,Ri ),

where min-cut(S,Ri ) is the min. # of edges that one has to remove in N to disconnect S and Ri .

Can we design nodes operations (network code) such that the bound is achieved? YES!

In fact, linear operations suffice!
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The “Butterfly” network
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This strategy is optimal: there is no better strategy!

More generally...
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Max-flow-min-cut theorem

Assume that:

the source S sends messages m1, ...,mk ∈ Fn
q ,

the nodes perform linear operations (linear network coding) on the received inputs,

the nodes forward the output of these operations,

receiver R obtains vectors n1, ...,ns on the incoming edges.

Then we can write: 
n1

n2

...

ns

= G(R) ·


m1

m2

...

mk

 ,

where G(R) is the global transfer matrix at R, describing all linear nodes operations.

Theorem (Li, Yeung, Cai, 2002)

Assume k = µ(N ). There exist linear nodes operations such that G(R) is a k×k invertible
matrix for each receiver R, provided that q is sufficiently large.

Network decoding at each receiver R: multiply by G(R)−1.
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Back to the Butterfly network

m1

m2

S

R1

R2

V

m1

m2

m1

m2

m1 +m2

m1 +m2

m1 +m2
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Receiver R1 obtains [
m1

m1 +m2

]
=

[
1 0

1 1

]
·

[
m1

m2

]
.

Thus

G(R1) =

[
1 0

1 1

]
.
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Random network coding

Recall:

the source organizes the messages m1, ...,mk ∈ Fn
q in the rows of a message matrix M,

if no errors occur, then receiver R obtains Y = G(R) ·M.

If the network N is large, or time-dependent, then the G(R)’s may be difficult to design.

Theorem (Ho, Médard, Kötter, Karger, Effros, Shi, Leong, 2006)

Assume k = µ(N ). If each node performs random linear operations on the received inputs, then

lim
q→∞

P [G(R) is left-invertible for all R] = 1.

If G(R) is left-invertible, what do M and G(R) ·M have in common? The row-space!

IDEA (Kötter, Kschischang, 2008): define the message to be rowsp(M).

1≤ k < n integers, q prime power, Gq(k,n) set of k-dimensional subspaces of Fn
q .

Definition

A subspace code of length n and dimension k is a subset C ⊆ Gq(k,n) with |C | ≥ 2.
The elements of C are the “legitimate” message spaces.
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Codes for networks

1≤ k < n integers, q prime power, Gq(k,n) set of k-dimensional subspaces of Fn
q .

Definition (Kötter-Kschischang, 2008)

A subspace code is a subset C ⊆ Gq(k,n) with |C | ≥ 2. Elements of C : codewords.

Goal of communication scheme

Message transmission + Error correction.

(1) V = SpanFq {m1,m2, ...,mk} ∈ C is sent...

(2) ...V⊕E is received, E ⊆ Fn
q subspace  number of errors := dimFq (E).

Decoding: recover V from V⊕E .
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Subspace codes

1≤ k < n integers, q prime power, Gq(k,n) set of k-dimensional subspaces of Fn
q .

Definition (Kötter, Kschischang, 2008)

A subspace code is a subset C ⊆ Gq(k,n) with |C | ≥ 2. Elements of C : codewords.

(1) Subspace distance on Gq(k,n): d(V ,W ) := 2k−2dim(V ∩W ), V ,W ∈ Gq(k,n).

(2) Minimum distance of C ⊆ Gq(k,n): d(C ) := min{d(V ,W ) : V ,W ∈ C ,V 6= W }.

... new research directions in Coding Theory:

Bounds on the cardinality of subspace codes (for given minimum distance).

Construction of subspace codes.

Decoding algorithms.

Connections to Projective Geometry.

Applications to Cryptography.
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Bounds and constructions

Singleton-type bound:

Theorem

Assume n ≥ 2k. Let C ⊆ Gq(k,n) be a subspace code of minimum distance d(C ) = 2δ . Then

|C |< 4 ·q(n−k)(k−δ+1).

Reed-Solomon-like codes:

Theorem

Assume n ≥ 2k. For every 1≤ δ ≤ k there exists a subspace code C ⊆ Gq(k,n) of minimum
distance d(C ) = 2δ and

|C |= q(n−k)(k−δ+1).

Reed-Solomon-like codes are optimal, up to constant factor.

Efficient decoding algorithms are known.
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Equidistant subspace codes

Definition

A subspace code C ⊆ Gq(k,n) is equidistant is d(V ,W ) is constant for all V 6= W ∈ C .

I.e., c := dim(V ∩W ) is constant (C is c-intersecting).

Problems

1 Describe properties of large equidistant codes.

2 Construct large sets of equidistant codes (and decode them).

Focus on: asymptotic/general structural properties.
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Sunflowers

Definition

An equidistant code C ⊆ Gq(k,n) is a sunflower if there is C ⊆ Fn
q st. V ∩W = C for all

V 6= W ∈ C . The space C is the center.

Theorem (Deza, Etzion-Raviv)

Let C ⊆ Gq(k,n) be a c-intersecting equidistant codes. Assume

|C | ≥
(
qk −qc

q−1

)2

+
qk −qc

q−1
+ 1.

Then C is a sunflower.
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Sunflowers and partial spreads

Definition

A partial k-spread in Fn
q is a set C ⊆ Gq(k,n) such that U ∩V = {0} for all U,V ∈ C with U 6= V .

There exists a 1-to-1 correspondence:

c-intersecting sunflowers in Fn
q ! partial (k−c)-spreads in Fn−c

q

Proposition (Gorla, R.)

Let eq(k,n,c) := max{|C | : C ⊆ Gq(k,n) is a sunflower with center of dimension c}.
Denote by r be the reminder of the division of n−c by k−c.

Then:

qn−c −qr

qk−c −1
−qr + 1 ≤ eq(k,n,c) ≤ qn−c −qr

qk−c −1
.
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Classification of sunflower codes

We classify equidistant codes of maximum cardinality for most values of the parameters.

Definition

Denote by V⊥ the orthogonal of a subspace V ⊆ Fn
q w.r. to the standard inner product of Fn

q .

The orthogonal of a subspace code C ⊆ Gq(k,n) is C⊥ := {V⊥ : V ∈ C }.

Theorem (Gorla, R.)

Let C ⊆ Gq(k,n) be an equidistant c-intersecting code of maximum cardinality. Assume that at
least one of the following holds:

c ∈ {0,k−1,2k−n},
q� 0 and n ≥ 3k−1,

q� 0 and n ≤ (3k + 1)/2.

Then either C is a sunflower, or C⊥ is a sunflower (mutually exclusive properties).

There are counterexamples in the range (3k + 1)/2 < n < 3k−1 for all q, e.g.

Proposition (Gorla, R.)

An equidistant 1-intersecting code C ⊆ Gq(3,6) of maximum cardinality is never a sunflower.
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q� 0 and n ≤ (3k + 1)/2.

Then either C is a sunflower, or C⊥ is a sunflower (mutually exclusive properties).

There are counterexamples in the range (3k + 1)/2 < n < 3k−1 for all q, e.g.

Proposition (Gorla, R.)

An equidistant 1-intersecting code C ⊆ Gq(3,6) of maximum cardinality is never a sunflower.
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Construction of sunflower codes

p ∈ Fq [x] irreducible, monic; k := deg(p); p = ∑
k
i=0 pix

i . Companion matrix of p:

M(p) :=



0 1 0 · · · 0

0 0 1 0

...
. . .

...

0 0 0 1

−p0 −p1 −p2 · · · −pk−1


.

We have Fq [M(p)] ∼= Fqk .
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Construction of sunflower codes

Theorem

Take integers 1≤ k < n and min{0,2k−n} ≤ c ≤ k−1.

Write n−c = h(k−c) + r , with 0≤ r ≤ k−c−1 and h ≥ 2.

Choose irreducible monic polynomials p,p′ ∈ Fq [x] of degree k−c and k−c + r , resp.

Set P := M(p) and P ′ := M(p′).

For 1≤ i ≤ h−1 let Mi (p,p
′) be the set of k×n matrices of the form[

Ic 0c×(k−c) · · · · · · · · · · · · · · · 0c×(k−c) 0c×(k−c+r)

0(k−c)×c 0k−c · · · 0k−c Ik−c Ai+1 · · · Ah−1 A[k−c]

]
,

where we have i −2 consecutive copies of 0k−c , Ai+1, ...,Ah−1 ∈ Fq [P], A ∈ Fq [P ′], and
A[k−c] denotes the last k−c rows of A.

The set

C :=
⋃h−1
i=1 {rowsp(M) : M ∈Mi (p,p

′)}

∪

{
rowsp

[
Ic 0c×(k−c) · · · 0c×(k−c) 0c×(k−c+r) 0c×(k−c)

0(k−c)×c 0k−c · · · 0k−c 0(k−c)×(k−c+r) Ik−c

]}

is a sunflower in Gq(k,n) of cardinality |C |= qn−c−qr
qk−c−1

−qr + 1.
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Sunflower codes

Theorem

Sunflower codes:

1 have efficient decoding algorithm,

2 are asymptotically optimal as sunflowers, and therefore as equidistant codes for most
parameters (classification).

Other problems we investigated

1 Classify optimal equidistant codes C such that both C and C⊥ are sunflowers.

2 Estimate the number of distinct intersections of a non-sunflower equidistant codes.

Recall...

Theorem (Gorla, R.)

Let C ⊆ Gq(k,n) be an equidistant c-intersecting code of maximum cardinality. Assume that at least one of the
following holds:

c ∈ {0,k−1,2k−n},

q� 0 and n ≥ 3k−1,

q� 0 and n ≤ (3k + 1)/2.
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More properties of equidistant codes

Define the span of a subspace code C ⊆ Gq(k,n) as span(C ) := ∑U∈C U ⊆ Fn
q .

Lemma

Let C ⊆ Gq(k,n) be an equidistant code of maximum cardinality. Then span(C ) = Fn
q .

Proposition

Let C ⊆ Gq(k,n) be an equidistant c-intersecting code of maximum cardinality. Assume
n > 2k−c. Then C⊥ is not a sunflower.

1 Assume that C⊥ is a sunflower. The center of C⊥, say D, has dim(D) = n−2k +c > 0.

2 We have U⊥ ⊇D for all U ∈ C , and thus U ⊆D⊥ for all U ∈ C .

3 It follows span(C )⊆D⊥ ( Fn
q , contradicting the lemma.

Corollary

Let C ⊆ Gq(k,n) be a c-intersecting equidistant code of maximum cardinality. TFAE:

C and C⊥ are both sunflowers,

c = 0 and n = 2k,

n = 2k and both C and C⊥ are spreads.
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Centers of equidistant codes

The set of centers of an equidistant code C ⊆ Gq(k,n) is T (C ) := {U ∩V : U,V ∈ C , U 6= V },
and the number of centers of C is t(C ) := |T (C )|.

Proposition

Let C ⊆ Gq(k,n) be an c-intersecting equidistant code. One of the following properties holds:

1 C is a sunflower, or

2 t(C )≥ |C | q
c−qc−1

qk−qc−1 .

Corollary (asymptotic estimate of the number of centers)

Let C ⊆ Gq(k,n) be a c-intersecting non-sunflower equidistant code of maximum cardinality.
Denote by r the remainder of the division of n−c by k−c. Then

t(C )≥
(
qn−c −qr

qk−c −1
−qr + 1

)
qc −qc−1

qk −qc−1
.

In particular, limq→∞ t(C )q−(n−2k+c) ∈ [1,+∞].

Thank you very much for your attention!

Alberto Ravagnani (University College Dublin) Equidistant Subspace Codes Ghent, Dec 5 2017 19 / 19



Centers of equidistant codes

The set of centers of an equidistant code C ⊆ Gq(k,n) is T (C ) := {U ∩V : U,V ∈ C , U 6= V },
and the number of centers of C is t(C ) := |T (C )|.

Proposition

Let C ⊆ Gq(k,n) be an c-intersecting equidistant code. One of the following properties holds:

1 C is a sunflower, or

2 t(C )≥ |C | q
c−qc−1

qk−qc−1 .

Corollary (asymptotic estimate of the number of centers)

Let C ⊆ Gq(k,n) be a c-intersecting non-sunflower equidistant code of maximum cardinality.
Denote by r the remainder of the division of n−c by k−c. Then

t(C )≥
(
qn−c −qr

qk−c −1
−qr + 1

)
qc −qc−1

qk −qc−1
.

In particular, limq→∞ t(C )q−(n−2k+c) ∈ [1,+∞].

Thank you very much for your attention!

Alberto Ravagnani (University College Dublin) Equidistant Subspace Codes Ghent, Dec 5 2017 19 / 19



Centers of equidistant codes

The set of centers of an equidistant code C ⊆ Gq(k,n) is T (C ) := {U ∩V : U,V ∈ C , U 6= V },
and the number of centers of C is t(C ) := |T (C )|.

Proposition

Let C ⊆ Gq(k,n) be an c-intersecting equidistant code. One of the following properties holds:

1 C is a sunflower, or

2 t(C )≥ |C | q
c−qc−1

qk−qc−1 .

Corollary (asymptotic estimate of the number of centers)

Let C ⊆ Gq(k,n) be a c-intersecting non-sunflower equidistant code of maximum cardinality.
Denote by r the remainder of the division of n−c by k−c. Then

t(C )≥
(
qn−c −qr

qk−c −1
−qr + 1

)
qc −qc−1

qk −qc−1
.

In particular, limq→∞ t(C )q−(n−2k+c) ∈ [1,+∞].

Thank you very much for your attention!

Alberto Ravagnani (University College Dublin) Equidistant Subspace Codes Ghent, Dec 5 2017 19 / 19



Centers of equidistant codes

The set of centers of an equidistant code C ⊆ Gq(k,n) is T (C ) := {U ∩V : U,V ∈ C , U 6= V },
and the number of centers of C is t(C ) := |T (C )|.

Proposition

Let C ⊆ Gq(k,n) be an c-intersecting equidistant code. One of the following properties holds:

1 C is a sunflower, or

2 t(C )≥ |C | q
c−qc−1

qk−qc−1 .

Corollary (asymptotic estimate of the number of centers)

Let C ⊆ Gq(k,n) be a c-intersecting non-sunflower equidistant code of maximum cardinality.
Denote by r the remainder of the division of n−c by k−c. Then

t(C )≥
(
qn−c −qr

qk−c −1
−qr + 1

)
qc −qc−1

qk −qc−1
.

In particular, limq→∞ t(C )q−(n−2k+c) ∈ [1,+∞].

Thank you very much for your attention!

Alberto Ravagnani (University College Dublin) Equidistant Subspace Codes Ghent, Dec 5 2017 19 / 19


