Network Coding and Equidistant Subspace Codes

Alberto Ravagnani

University College Dublin

Ghent, December 5, 2017

What is network coding about?

Network coding: data transmission over (possibly noisy/adversarial) networks.

What is network coding about?

Network coding: data transmission over (possibly noisy/adversarial) networks.

Applications of network coding

Patches distribution.

Applications of network coding

Streaming TV.

Modeling network communications

Network ~~> directed acyclic multi-graph:

- The source s sends messages $m_1, m_2, ..., m_k \in \mathbb{F}_q^n$
- The sinks 🕮 demand all the messages (multicast)
- What about the nodes N ?

Goal

Maximize the amount of messages that can be delivered to all sinks per single channel use (rate).

KEY IDEA: allow the nodes to recombine messages before forwarding them towards the sinks.

- $\bullet \ {\mathscr N}$ the network
- S the source
- $\mathbf{R}_1, ..., \mathbf{R}_T$ the sinks (receivers)

Theorem (Ahlswede, Cai, Li, Yeung, 2000)

The (multicast) rate of any communication over ${\mathscr N}$ satisfies

$$\mathsf{rate} \leq \mu(\mathscr{N}) := \min_{i=1}^{T} \mathsf{min-cut}(\mathbf{S}, \mathbf{R}_i),$$

where min-cut(S, R_i) is the min. # of edges that one has to remove in \mathcal{N} to disconnect S and R_i .

- $\bullet \ {\mathscr N}$ the network
- S the source
- $\mathbf{R}_1, ..., \mathbf{R}_T$ the sinks (receivers)

Theorem (Ahlswede, Cai, Li, Yeung, 2000)

The (multicast) rate of any communication over ${\mathscr N}$ satisfies

$$\mathsf{rate} \leq \mu(\mathscr{N}) := \min_{i=1}^{T} \mathsf{min-cut}(\mathbf{S}, \mathbf{R}_i),$$

where min-cut(S, R_i) is the min. # of edges that one has to remove in \mathscr{N} to disconnect S and R_i .

Can we design nodes operations (network code) such that the bound is achieved?

- $\bullet \ {\mathscr N}$ the network
- S the source
- $\mathbf{R}_1, ..., \mathbf{R}_T$ the sinks (receivers)

Theorem (Ahlswede, Cai, Li, Yeung, 2000)

The (multicast) rate of any communication over ${\mathscr N}$ satisfies

$$\mathsf{rate} \leq \mu(\mathscr{N}) := \min_{i=1}^{T} \mathsf{min-cut}(\mathbf{S}, \mathbf{R}_i),$$

where min-cut(S, R_i) is the min. # of edges that one has to remove in \mathcal{N} to disconnect S and R_i .

Can we design nodes operations (network code) such that the bound is achieved? YES!

In fact, linear operations suffice!

This strategy is optimal: there is no better strategy!

More generally ...

Max-flow-min-cut theorem

Assume that:

- the source **S** sends messages $m_1, ..., m_k \in \mathbb{F}_q^n$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- the nodes forward the output of these operations,
- receiver **R** obtains vectors $n_1, ..., n_s$ on the incoming edges.

Max-flow-min-cut theorem

Assume that:

- the source **S** sends messages $m_1, ..., m_k \in \mathbb{F}_q^n$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- the nodes forward the output of these operations,
- receiver **R** obtains vectors $n_1, ..., n_s$ on the incoming edges.

Then we can write:

$$\begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_s \end{bmatrix} = G(\mathbf{R}) \cdot \begin{bmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{bmatrix},$$

where $G(\mathbf{R})$ is the global transfer matrix at \mathbf{R} , describing all linear nodes operations.

Max-flow-min-cut theorem

Assume that:

- the source **S** sends messages $m_1, ..., m_k \in \mathbb{F}_q^n$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- the nodes forward the output of these operations,
- receiver **R** obtains vectors $n_1, ..., n_s$ on the incoming edges.

Then we can write:

$$\begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_s \end{bmatrix} = G(\mathbf{R}) \cdot \begin{bmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{bmatrix},$$

where $G(\mathbf{R})$ is the global transfer matrix at \mathbf{R} , describing all linear nodes operations.

Theorem (Li, Yeung, Cai, 2002)

Assume $k = \mu(\mathcal{N})$. There exist linear nodes operations such that $G(\mathbf{R})$ is a $k \times k$ invertible matrix for each receiver \mathbf{R} , provided that q is sufficiently large.

Network decoding at each receiver **R**: multiply by $G(\mathbf{R})^{-1}$.

Back to the Butterfly network

Back to the Butterfly network

Receiver \mathbf{R}_1 obtains

$$\begin{bmatrix} m_1 \\ m_1 + m_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}.$$
$$G(\mathbf{R}_1) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Thus

Recall:

- the source organizes the messages $m_1,...,m_k\in \mathbb{F}_q^n$ in the rows of a message matrix M,
- if no errors occur, then receiver **R** obtains $Y = G(\mathbf{R}) \cdot M$.

If the network \mathcal{N} is large, or time-dependent, then the $G(\mathbf{R})$'s may be difficult to design.

Recall:

- the source organizes the messages $m_1,...,m_k\in \mathbb{F}_q^n$ in the rows of a message matrix M,
- if no errors occur, then receiver **R** obtains $Y = G(\mathbf{R}) \cdot M$.

If the network \mathcal{N} is large, or time-dependent, then the $G(\mathbf{R})$'s may be difficult to design.

Theorem (Ho, Médard, Kötter, Karger, Effros, Shi, Leong, 2006) Assume $k = \mu(\mathscr{N})$. If each node performs **random** linear operations on the received inputs, then $\lim_{q \to \infty} \mathbb{P}[G(\mathbf{R}) \text{ is left-invertible for all } \mathbf{R}] = 1.$

Recall:

- the source organizes the messages $m_1,...,m_k\in \mathbb{F}_q^n$ in the rows of a message matrix M,
- if no errors occur, then receiver **R** obtains $Y = G(\mathbf{R}) \cdot M$.

If the network \mathcal{N} is large, or time-dependent, then the $G(\mathbf{R})$'s may be difficult to design.

Theorem (Ho, Médard, Kötter, Karger, Effros, Shi, Leong, 2006) Assume $k = \mu(\mathcal{N})$. If each node performs **random** linear operations on the received inputs, then $\lim_{q \to \infty} \mathbb{P}[G(\mathbf{R}) \text{ is left-invertible for all } \mathbf{R}] = 1.$

If $G(\mathbf{R})$ is left-invertible, what do M and $G(\mathbf{R}) \cdot M$ have in common? The row-space!

IDEA (Kötter, Kschischang, 2008): define the message to be rowsp(M).

Recall:

- the source organizes the messages $m_1,...,m_k\in \mathbb{F}_q^n$ in the rows of a message matrix M,
- if no errors occur, then receiver **R** obtains $Y = G(\mathbf{R}) \cdot M$.

If the network \mathcal{N} is large, or time-dependent, then the $G(\mathbf{R})$'s may be difficult to design.

Theorem (Ho, Médard, Kötter, Karger, Effros, Shi, Leong, 2006) Assume $k = \mu(\mathcal{N})$. If each node performs **random** linear operations on the received inputs, then $\lim_{q \to \infty} \mathbb{P}[G(\mathbf{R}) \text{ is left-invertible for all } \mathbf{R}] = 1.$

If $G(\mathbf{R})$ is left-invertible, what do M and $G(\mathbf{R}) \cdot M$ have in common? The row-space!

IDEA (Kötter, Kschischang, 2008): define the message to be rowsp(M).

 $1 \le k < n$ integers, q prime power, $\mathscr{G}_q(k,n)$ set of k-dimensional subspaces of \mathbb{F}_q^n .

Definition

A subspace code of length *n* and dimension *k* is a subset $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ with $|\mathscr{C}| \ge 2$. The elements of \mathscr{C} are the "legitimate" message spaces.

Codes for networks

 $1 \le k < n$ integers, q prime power, $\mathscr{G}_q(k, n)$ set of k-dimensional subspaces of \mathbb{F}_q^n .

Definition (Kötter-Kschischang, 2008)

A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ with $|\mathscr{C}| \ge 2$. Elements of \mathscr{C} : codewords.

Codes for networks

 $1 \le k < n$ integers, q prime power, $\mathscr{G}_q(k, n)$ set of k-dimensional subspaces of \mathbb{F}_q^n .

Definition (Kötter-Kschischang, 2008)

A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ with $|\mathscr{C}| \ge 2$. Elements of \mathscr{C} : codewords.

Goal of communication scheme

Message transmission + Error correction.

(1) $V = \operatorname{Span}_{\mathbb{F}_q} \{m_1, m_2, ..., m_k\} \in \mathscr{C} \text{ is sent...}$

Codes for networks

 $1 \le k < n$ integers, q prime power, $\mathscr{G}_q(k, n)$ set of k-dimensional subspaces of \mathbb{F}_q^n .

Definition (Kötter-Kschischang, 2008)

A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_{q}(k, n)$ with $|\mathscr{C}| \ge 2$. Elements of \mathscr{C} : codewords.

Goal of communication scheme

Message transmission + Error correction.

(1) $V = \operatorname{Span}_{\mathbb{F}_q} \{m_1, m_2, ..., m_k\} \in \mathscr{C} \text{ is sent...}$

(2) ... $V \oplus E$ is received, $E \subseteq \mathbb{F}_q^n$ subspace \rightsquigarrow number of errors := dim_{\mathbb{F}_q}(E). Decoding: recover V from $V \oplus E$. $1 \le k < n$ integers, q prime power, $\mathscr{G}_q(k, n)$ set of k-dimensional subspaces of \mathbb{F}_q^n .

Definition (Kötter, Kschischang, 2008)	
A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ with $ \mathscr{C} \ge 2$.	Elements of <i>C</i> : codewords .

 $1 \le k < n$ integers, q prime power, $\mathscr{G}_q(k, n)$ set of k-dimensional subspaces of \mathbb{F}_q^n .

Definition (Kötter, Kschischang, 2008)

A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ with $|\mathscr{C}| \ge 2$. Elements of \mathscr{C} : codewords.

- (1) Subspace distance on $\mathscr{G}_q(k,n)$: $d(V,W) := 2k 2\dim(V \cap W), \quad V, W \in \mathscr{G}_q(k,n).$
- (2) Minimum distance of $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$: $d(\mathscr{C}) := \min\{d(V, W) : V, W \in \mathscr{C}, V \neq W\}.$

 $1 \le k < n$ integers, q prime power, $\mathscr{G}_q(k, n)$ set of k-dimensional subspaces of \mathbb{F}_q^n .

Definition (Kötter, Kschischang, 2008)

A subspace code is a subset $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ with $|\mathscr{C}| \ge 2$. Elements of \mathscr{C} : codewords.

(1) Subspace distance on $\mathscr{G}_q(k,n)$: $d(V,W) := 2k - 2\dim(V \cap W), \quad V, W \in \mathscr{G}_q(k,n).$

(2) Minimum distance of $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$: $d(\mathscr{C}) := \min\{d(V, W) : V, W \in \mathscr{C}, V \neq W\}.$

... new research directions in Coding Theory:

- Bounds on the cardinality of subspace codes (for given minimum distance).
- Construction of subspace codes.
- Decoding algorithms.
- Connections to Projective Geometry.
- Applications to Cryptography.

Singleton-type bound:

Theorem

Assume $n \ge 2k$. Let $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ be a subspace code of minimum distance $d(\mathscr{C}) = 2\delta$. Then

 $|\mathscr{C}| < 4 \cdot q^{(n-k)(k-\delta+1)}.$

Singleton-type bound:

Theorem

Assume $n \ge 2k$. Let $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ be a subspace code of minimum distance $d(\mathscr{C}) = 2\delta$. Then

 $|\mathscr{C}| < 4 \cdot q^{(n-k)(k-\delta+1)}.$

Reed-Solomon-like codes:

Theorem

Assume $n \ge 2k$. For every $1 \le \delta \le k$ there exists a subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ of minimum distance $d(\mathscr{C}) = 2\delta$ and

 $|\mathscr{C}| = q^{(n-k)(k-\delta+1)}.$

Singleton-type bound:

Theorem

Assume $n \ge 2k$. Let $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ be a subspace code of minimum distance $d(\mathscr{C}) = 2\delta$. Then

 $|\mathscr{C}| < 4 \cdot q^{(n-k)(k-\delta+1)}.$

Reed-Solomon-like codes:

Theorem

Assume $n \ge 2k$. For every $1 \le \delta \le k$ there exists a subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ of minimum distance $d(\mathscr{C}) = 2\delta$ and

$$|\mathscr{C}| = q^{(n-k)(k-\delta+1)}.$$

Reed-Solomon-like codes are optimal, up to constant factor.

Efficient decoding algorithms are known.

Definition

A subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ is equidistant is d(V,W) is constant for all $V \neq W \in \mathscr{C}$.

I.e., $c := \dim(V \cap W)$ is constant (\mathscr{C} is *c*-intersecting).

Definition

A subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ is equidistant is d(V, W) is constant for all $V \neq W \in \mathscr{C}$.

I.e., $c := \dim(V \cap W)$ is constant (\mathscr{C} is *c*-intersecting).

Problems

- Describe properties of large equidistant codes.
- Onstruct large sets of equidistant codes (and decode them).

Definition

A subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ is equidistant is d(V, W) is constant for all $V \neq W \in \mathscr{C}$.

I.e., $c := \dim(V \cap W)$ is constant (\mathscr{C} is *c*-intersecting).

Problems

- Describe properties of large equidistant codes.
- Onstruct large sets of equidistant codes (and decode them).

Focus on: asymptotic/general structural properties.

Sunflowers

Definition

An equidistant code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ is a sunflower if there is $C \subseteq \mathbb{F}_q^n$ st. $V \cap W = C$ for all $V \neq W \in \mathscr{C}$. The space C is the center.

Sunflowers

Definition

An equidistant code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ is a sunflower if there is $C \subseteq \mathbb{F}_q^n$ st. $V \cap W = C$ for all $V \neq W \in \mathscr{C}$. The space C is the center.

Theorem (Deza, Etzion-Raviv)

Let $\mathscr{C} \subseteq \mathscr{G}_q(k, n)$ be a *c*-intersecting equidistant codes. Assume

$$|\mathscr{C}| \geq \left(\frac{q^k - q^c}{q - 1}\right)^2 + \frac{q^k - q^c}{q - 1} + 1.$$

Then \mathscr{C} is a sunflower.

Alberto Ravagnani (University College Dublin)

Definition

A partial k-spread in \mathbb{F}_{a}^{n} is a set $\mathscr{C} \subseteq \mathscr{G}_{q}(k,n)$ such that $U \cap V = \{0\}$ for all $U, V \in \mathscr{C}$ with $U \neq V$.

There exists a 1-to-1 correspondence:

c-intersecting sunflowers in $\mathbb{F}_q^n \iff$ partial (k-c)-spreads in \mathbb{F}_q^{n-c}

Proposition (Gorla, R.)

Let $e_q(k, n, c) := \max\{|\mathscr{C}| : \mathscr{C} \subseteq \mathscr{G}_q(k, n) \text{ is a sunflower with center of dimension } c\}$. Denote by r be the reminder of the division of n - c by k - c.

Then:

$$\frac{q^{n-c}-q^r}{q^{k-c}-1}-q^r+1 \leq e_q(k,n,c) \leq \frac{q^{n-c}-q^r}{q^{k-c}-1}.$$

Classification of sunflower codes

We classify equidistant codes of maximum cardinality for most values of the parameters.

Definition

Denote by V^{\perp} the orthogonal of a subspace $V \subseteq \mathbb{F}_q^n$ w.r. to the standard inner product of \mathbb{F}_q^n . The **orthogonal** of a subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ is $\mathscr{C}^{\perp} := \{V^{\perp} : V \in \mathscr{C}\}.$

Classification of sunflower codes

We classify equidistant codes of maximum cardinality for most values of the parameters.

Definition

Denote by V^{\perp} the orthogonal of a subspace $V \subseteq \mathbb{F}_q^n$ w.r. to the standard inner product of \mathbb{F}_q^n . The **orthogonal** of a subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ is $\mathscr{C}^{\perp} := \{V^{\perp} : V \in \mathscr{C}\}.$

Theorem (Gorla, R.)

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an equidistant *c*-intersecting code of maximum cardinality. Assume that at least one of the following holds:

- $c \in \{0, k-1, 2k-n\},\$
- $q \gg 0$ and $n \ge 3k 1$,
- $q \gg 0$ and $n \le (3k+1)/2$.

Then either \mathscr{C} is a sunflower, or \mathscr{C}^{\perp} is a sunflower (mutually exclusive properties).

Classification of sunflower codes

We classify equidistant codes of maximum cardinality for most values of the parameters.

Definition

Denote by V^{\perp} the orthogonal of a subspace $V \subseteq \mathbb{F}_q^n$ w.r. to the standard inner product of \mathbb{F}_q^n . The **orthogonal** of a subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ is $\mathscr{C}^{\perp} := \{V^{\perp} : V \in \mathscr{C}\}.$

Theorem (Gorla, R.)

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an equidistant *c*-intersecting code of maximum cardinality. Assume that at least one of the following holds:

- $c \in \{0, k-1, 2k-n\},\$
- $q \gg 0$ and $n \ge 3k 1$,
- $q \gg 0$ and $n \le (3k+1)/2$.

Then either \mathscr{C} is a sunflower, or \mathscr{C}^{\perp} is a sunflower (mutually exclusive properties).

There are counterexamples in the range (3k+1)/2 < n < 3k-1 for all q, e.g.

Proposition (Gorla, R.)

An equidistant 1-intersecting code $\mathscr{C} \subseteq \mathscr{G}_q(3,6)$ of maximum cardinality is **never** a sunflower.

 $p \in \mathbb{F}_q[x]$ irreducible, monic; $k := \deg(p)$; $p = \sum_{i=0}^k p_i x^i$. Companion matrix of p:

$$\mathsf{M}(p) := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & & 1 \\ -p_0 & -p_1 & -p_2 & \cdots & -p_{k-1} \end{bmatrix}.$$

We have $\mathbb{F}_q[M(p)] \cong \mathbb{F}_{q^k}$.

Construction of sunflower codes

Theorem

- Take integers $1 \le k < n$ and $\min\{0, 2k n\} \le c \le k 1$.
- Write n-c = h(k-c) + r, with $0 \le r \le k-c-1$ and $h \ge 2$.
- Choose irreducible monic polynomials $p, p' \in \mathbb{F}_q[x]$ of degree k c and k c + r, resp.
- Set P := M(p) and P' := M(p').
- For $1 \leq i \leq h-1$ let $\mathscr{M}_i(p,p')$ be the set of $k \times n$ matrices of the form

$$\begin{bmatrix} I_c & 0_{c\times(k-c)} & \cdots & \cdots & \cdots & \cdots & 0_{c\times(k-c)} & 0_{c\times(k-c+r)} \\ 0_{(k-c)\times c} & 0_{k-c} & \cdots & 0_{k-c} & I_{k-c} & A_{i+1} & \cdots & A_{h-1} & A_{[k-c]} \end{bmatrix},$$

where we have i-2 consecutive copies of 0_{k-c} , $A_{i+1},...,A_{h-1} \in \mathbb{F}_q[P]$, $A \in \mathbb{F}_q[P']$, and $A_{\lceil k-c \rceil}$ denotes the last k-c rows of A.

The set

$$\begin{aligned} \mathscr{C} &:= \bigcup_{i=1}^{h-1} \quad \{ \mathsf{rowsp}(M) : M \in \mathscr{M}_i(p,p') \} \\ & \cup \quad \left\{ \mathsf{rowsp} \begin{bmatrix} I_c & 0_{c \times (k-c)} & \cdots & 0_{c \times (k-c)} & 0_{c \times (k-c+r)} & 0_{c \times (k-c)} \\ 0_{(k-c) \times c} & 0_{k-c} & \cdots & 0_{k-c} & 0_{(k-c) \times (k-c+r)} & I_{k-c} \end{bmatrix} \right\} \end{aligned}$$

is a sunflower in $\mathscr{G}_q(k,n)$ of cardinality $|\mathscr{C}| = \frac{q^{n-c}-q^r}{q^{k-c}-1} - q^r + 1.$

Sunflower codes

Theorem

Sunflower codes:

- have efficient decoding algorithm,
- are asymptotically optimal as sunflowers, and therefore as equidistant codes for most parameters (classification).

Sunflower codes

Theorem

Sunflower codes:

- have efficient decoding algorithm,
- are asymptotically optimal as sunflowers, and therefore as equidistant codes for most parameters (classification).

Other problems we investigated

- $\textbf{O} \ \ Classify \ optimal \ equidistant \ codes \ \mathscr C \ such \ that \ both \ \mathscr C \ and \ \mathscr C^\perp \ are \ sunflowers.$
- **②** Estimate the number of distinct intersections of a non-sunflower equidistant codes.

Sunflower codes

Theorem

Sunflower codes:

- have efficient decoding algorithm,
- are asymptotically optimal as sunflowers, and therefore as equidistant codes for most parameters (classification).

Other problems we investigated

- $\textbf{O} \ \ Classify \ optimal \ equidistant \ codes \ \mathscr C \ such \ that \ both \ \mathscr C \ and \ \mathscr C^\perp \ are \ sunflowers.$
- ② Estimate the number of distinct intersections of a non-sunflower equidistant codes.

Recall...

Theorem (Gorla, R.)

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an equidistant *c*-intersecting code of maximum cardinality. Assume that at least one of the following holds:

- $c \in \{0, k-1, 2k-n\},\$
- $q \gg 0$ and $n \ge 3k-1$,
- $q \gg 0$ and $n \le (3k+1)/2$.

Then either \mathscr{C} is a sunflower, or \mathscr{C}^{\perp} is a sunflower (mutually exclusive properties).

Define the span of a subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ as $\operatorname{span}(\mathscr{C}) := \sum_{U \in \mathscr{C}} U \subseteq \mathbb{F}_q^n$.

Lemma

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an equidistant code of maximum cardinality. Then span $(\mathscr{C}) = \mathbb{F}_q^n$.

Define the span of a subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ as $\operatorname{span}(\mathscr{C}) := \sum_{U \in \mathscr{C}} U \subseteq \mathbb{F}_q^n$.

Lemma

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an equidistant code of maximum cardinality. Then span $(\mathscr{C}) = \mathbb{F}_q^n$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an equidistant *c*-intersecting code of maximum cardinality. Assume n > 2k - c. Then \mathscr{C}^{\perp} is **not** a sunflower.

Define the span of a subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ as $\operatorname{span}(\mathscr{C}) := \sum_{U \in \mathscr{C}} U \subseteq \mathbb{F}_q^n$.

Lemma

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an equidistant code of maximum cardinality. Then span $(\mathscr{C}) = \mathbb{F}_q^n$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an equidistant *c*-intersecting code of maximum cardinality. Assume n > 2k - c. Then \mathscr{C}^{\perp} is **not** a sunflower.

- **(**) Assume that \mathscr{C}^{\perp} is a sunflower. The center of \mathscr{C}^{\perp} , say *D*, has dim(D) = n 2k + c > 0.
- **②** We have $U^{\perp} \supseteq D$ for all $U \in \mathscr{C}$, and thus $U \subseteq D^{\perp}$ for all $U \in \mathscr{C}$.
- It follows span(\mathscr{C}) $\subseteq D^{\perp} \subsetneq \mathbb{F}_{q}^{n}$, contradicting the lemma.

Define the span of a subspace code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ as $\operatorname{span}(\mathscr{C}) := \sum_{U \in \mathscr{C}} U \subseteq \mathbb{F}_q^n$.

Lemma

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an equidistant code of maximum cardinality. Then span $(\mathscr{C}) = \mathbb{F}_q^n$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an equidistant *c*-intersecting code of maximum cardinality. Assume n > 2k - c. Then \mathscr{C}^{\perp} is **not** a sunflower.

- **(**) Assume that \mathscr{C}^{\perp} is a sunflower. The center of \mathscr{C}^{\perp} , say *D*, has dim(D) = n 2k + c > 0.
- **②** We have $U^{\perp} \supseteq D$ for all $U \in \mathscr{C}$, and thus $U \subseteq D^{\perp}$ for all $U \in \mathscr{C}$.

It follows span(\mathscr{C}) $\subseteq D^{\perp} \subsetneq \mathbb{F}_{a}^{n}$, contradicting the lemma.

Corollary

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be a *c*-intersecting equidistant code of maximum cardinality. TFAE:

- ${\mathscr C}$ and ${\mathscr C}^{\perp}$ are both sunflowers,
- c = 0 and n = 2k,
- n = 2k and both \mathscr{C} and \mathscr{C}^{\perp} are spreads.

The set of centers of an equidistant code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ is $T(\mathscr{C}) := \{U \cap V : U, V \in \mathscr{C}, U \neq V\}$, and the number of centers of \mathscr{C} is $t(\mathscr{C}) := |T(\mathscr{C})|$.

The set of centers of an equidistant code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ is $T(\mathscr{C}) := \{U \cap V : U, V \in \mathscr{C}, U \neq V\}$, and the number of centers of \mathscr{C} is $t(\mathscr{C}) := |T(\mathscr{C})|$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an *c*-intersecting equidistant code. One of the following properties holds:

- ${f 0}$ ${\mathscr C}$ is a sunflower, or
- $e t(\mathscr{C}) \geq |\mathscr{C}| \frac{q^c q^{c-1}}{q^k q^{c-1}}.$

The set of centers of an equidistant code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ is $T(\mathscr{C}) := \{U \cap V : U, V \in \mathscr{C}, U \neq V\}$, and the number of centers of \mathscr{C} is $t(\mathscr{C}) := |T(\mathscr{C})|$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an *c*-intersecting equidistant code. One of the following properties holds:

- $e t(\mathscr{C}) \geq |\mathscr{C}| \frac{q^c q^{c-1}}{q^k q^{c-1}}.$

Corollary (asymptotic estimate of the number of centers)

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be a *c*-intersecting non-sunflower equidistant code of maximum cardinality. Denote by *r* the remainder of the division of n-c by k-c. Then

$$t(\mathscr{C}) \geq \left(\frac{q^{n-c}-q^r}{q^{k-c}-1}-q^r+1\right)\frac{q^c-q^{c-1}}{q^k-q^{c-1}}.$$

In particular, $\lim_{q\to\infty} t(\mathscr{C})q^{-(n-2k+c)} \in [1,+\infty]$.

The set of centers of an equidistant code $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ is $T(\mathscr{C}) := \{U \cap V : U, V \in \mathscr{C}, U \neq V\}$, and the number of centers of \mathscr{C} is $t(\mathscr{C}) := |T(\mathscr{C})|$.

Proposition

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be an *c*-intersecting equidistant code. One of the following properties holds:

- 0 ${\mathscr C}$ is a sunflower, or
- $e t(\mathscr{C}) \geq |\mathscr{C}| \frac{q^c q^{c-1}}{q^k q^{c-1}}.$

Corollary (asymptotic estimate of the number of centers)

Let $\mathscr{C} \subseteq \mathscr{G}_q(k,n)$ be a *c*-intersecting non-sunflower equidistant code of maximum cardinality. Denote by *r* the remainder of the division of n-c by k-c. Then

$$t(\mathscr{C}) \geq \left(\frac{q^{n-c}-q^r}{q^{k-c}-1}-q^r+1\right)\frac{q^c-q^{c-1}}{q^k-q^{c-1}}.$$

In particular, $\lim_{q\to\infty} t(\mathscr{C})q^{-(n-2k+c)} \in [1,+\infty]$.

Thank you very much for your attention!