Covering Radius of Rank-Metric Codes

Alberto Ravagnani

- University College Dublin -

MTNS 18, Hong Kong, July 2018
joint work with Eimear Byrne

Rank-metric codes

Definition

A (rank-metric) code is a non-empty subset $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$. We assume $n \leq m$ w.l.o.g.
The (rank) distance between matrices $M, N \in \mathbb{F}_{q}^{n \times m}$ is $\operatorname{rk}(M-N)$.
If $|\mathscr{C}| \geq 2$, then the minimum distance of \mathscr{C} is

$$
d(\mathscr{C}):=\min \{\operatorname{rk}(M-N) \mid M, N \in \mathscr{C}, M \neq N\}
$$

Rank-metric codes

Definition

A (rank-metric) code is a non-empty subset $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$. We assume $n \leq m$ w.l.o.g.
The (rank) distance between matrices $M, N \in \mathbb{F}_{q}^{n \times m}$ is $\operatorname{rk}(M-N)$.
If $|\mathscr{C}| \geq 2$, then the minimum distance of \mathscr{C} is

$$
d(\mathscr{C}):=\min \{\operatorname{rk}(M-N) \mid M, N \in \mathscr{C}, M \neq N\} .
$$

We say that $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is linear if it is an \mathbb{F}_{q}-subspace of $\mathbb{F}_{q}^{n \times m}$. In this case the dual of \mathscr{C} is the linear code

$$
\mathscr{C}^{\perp}:=\left\{N \in \mathbb{F}_{q}^{n \times m}: \operatorname{Tr}\left(M N^{t}\right)=0 \text { for all } M \in \mathscr{C}\right\} \subseteq \mathbb{F}_{q}^{n \times m}
$$

Rank-metric codes

Definition

A (rank-metric) code is a non-empty subset $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$. We assume $n \leq m$ w.l.o.g.
The (rank) distance between matrices $M, N \in \mathbb{F}_{q}^{n \times m}$ is $\operatorname{rk}(M-N)$.
If $|\mathscr{C}| \geq 2$, then the minimum distance of \mathscr{C} is

$$
d(\mathscr{C}):=\min \{\operatorname{rk}(M-N) \mid M, N \in \mathscr{C}, M \neq N\} .
$$

We say that $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is linear if it is an \mathbb{F}_{q}-subspace of $\mathbb{F}_{q}^{n \times m}$. In this case the dual of \mathscr{C} is the linear code

$$
\mathscr{C}^{\perp}:=\left\{N \in \mathbb{F}_{q}^{n \times m}: \operatorname{Tr}\left(M N^{t}\right)=0 \text { for all } M \in \mathscr{C}\right\} \subseteq \mathbb{F}_{q}^{n \times m}
$$

- Studied by Delsarte for combinatorial interest via association schemes.
- Further studied independently by Gabidulin and Roth.
- Re-discovered by Kötter, Kschischang, Silva and applied to linear network coding.

Rank-metric codes

Definition

A (rank-metric) code is a non-empty subset $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$. We assume $n \leq m$ w.l.o.g.
The (rank) distance between matrices $M, N \in \mathbb{F}_{q}^{n \times m}$ is $\operatorname{rk}(M-N)$.
If $|\mathscr{C}| \geq 2$, then the minimum distance of \mathscr{C} is

$$
d(\mathscr{C}):=\min \{\operatorname{rk}(M-N) \mid M, N \in \mathscr{C}, M \neq N\} .
$$

We say that $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is linear if it is an \mathbb{F}_{q}-subspace of $\mathbb{F}_{q}^{n \times m}$. In this case the dual of \mathscr{C} is the linear code

$$
\mathscr{C}^{\perp}:=\left\{N \in \mathbb{F}_{q}^{n \times m}: \operatorname{Tr}\left(M N^{t}\right)=0 \text { for all } M \in \mathscr{C}\right\} \subseteq \mathbb{F}_{q}^{n \times m}
$$

- Studied by Delsarte for combinatorial interest via association schemes.
- Further studied independently by Gabidulin and Roth.
- Re-discovered by Kötter, Kschischang, Silva and applied to linear network coding.

What is linear network coding?

What is network coding about?

Network coding: data transmission over (possibly noisy/lossy/adversarial) networks.

Sink

Sink

S
Sink
$v_{1}, v_{2}, \ldots, v_{n}$

What is network coding about?

Network coding: data transmission over (possibly noisy/lossy/adversarial) networks.

A model for network communications

Network \rightsquigarrow directed acyclic multi-graph:

- The source ${ }^{s}$ sends messages $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{F}_{q}^{m}$
- The sinks simk demand all the messages (multicast)
- The nodes (n) forward linear combinations of the received inputs.

Rank-metric codes allow error correction in this context.

A model for network communications

Organize v_{1}, \ldots, v_{n} as the rows of a matrix $M:=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{F}_{q}^{n \times m}$.
Measure the distance between $M, N \in \mathbb{F}_{q}^{n \times m}$ as $\operatorname{rk}(M-N)$.

A model for network communications

Organize v_{1}, \ldots, v_{n} as the rows of a matrix $M:=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{F}_{q}^{n \times m}$.
Measure the distance between $M, N \in \mathbb{F}_{q}^{n \times m}$ as $\operatorname{rk}(M-N)$.
Why does this make sense?

A model for network communications

Organize v_{1}, \ldots, v_{n} as the rows of a matrix $M:=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{F}_{q}^{n \times m}$.
Measure the distance between $M, N \in \mathbb{F}_{q}^{n \times m}$ as $\operatorname{rk}(M-N)$.
Why does this make sense?
Silva, Kschishang, On metrics for error correction in network coding. IEEE Tran. IT, '09.

A model for network communications

R., Kschischang, Adversarial network coding. IEEE Tran. IT, '18.

- Mathematical framework for network coding with adversaries of different types.
- Rigorous definition of adversarial capacities of a network.
- Various communication models.
- Difference between "code" and "network code" and separability results.
- One source vs. multiple sources (interference).
- Techniques to prove bounds.
- Constructions.
- Open problems.

Covering Radius

Back to the mathematical theory of rank-metric codes...
Byrne, R., Covering radius of matrix codes endowed with the rank metric. SIAM J. Discrete Math. '17.

Byrne, R., Partition-balanced families of codes and density problems in coding theory. Preprint '18.

Definition

The covering radius of a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is the integer

$$
\rho(\mathscr{C}):=\min \left\{i \in \mathbb{N} \mid \text { for all } X \in \mathbb{F}_{q}^{n \times m} \text { there exists } M \in \mathscr{C} \text { with } d(X, M) \leq i\right\}
$$

Covering Radius

Back to the mathematical theory of rank-metric codes...
Byrne, R., Covering radius of matrix codes endowed with the rank metric. SIAM J. Discrete Math. '17.

Byrne, R., Partition-balanced families of codes and density problems in coding theory. Preprint '18.

Definition

The covering radius of a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is the integer

$$
\rho(\mathscr{C}):=\min \left\{i \in \mathbb{N} \mid \text { for all } X \in \mathbb{F}_{q}^{n \times m} \text { there exists } M \in \mathscr{C} \text { with } d(X, M) \leq i\right\}
$$

This the rank-analogue of the covering radius of a code $C \subseteq \mathbb{F}_{q}^{n}$ endowed with the Hamming distance.

Covering Radius

Back to the mathematical theory of rank-metric codes...
Byrne, R., Covering radius of matrix codes endowed with the rank metric. SIAM J. Discrete Math. '17.

Byrne, R., Partition-balanced families of codes and density problems in coding theory. Preprint '18.

Definition

The covering radius of a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is the integer

$$
\rho(\mathscr{C}):=\min \left\{i \in \mathbb{N} \mid \text { for all } X \in \mathbb{F}_{q}^{n \times m} \text { there exists } M \in \mathscr{C} \text { with } d(X, M) \leq i\right\}
$$

This the rank-analogue of the covering radius of a code $C \subseteq \mathbb{F}_{q}^{n}$ endowed with the Hamming distance.
$\rho(\mathscr{C})$ is the minimum value r such that the union of the spheres of radius r about the codeword cover the ambient space.

Covering Radius

Back to the mathematical theory of rank-metric codes...
Byrne, R., Covering radius of matrix codes endowed with the rank metric. SIAM J. Discrete Math. '17.

Byrne, R., Partition-balanced families of codes and density problems in coding theory. Preprint '18.

Definition

The covering radius of a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is the integer

$$
\rho(\mathscr{C}):=\min \left\{i \in \mathbb{N} \mid \text { for all } X \in \mathbb{F}_{q}^{n \times m} \text { there exists } M \in \mathscr{C} \text { with } d(X, M) \leq i\right\}
$$

This the rank-analogue of the covering radius of a code $C \subseteq \mathbb{F}_{q}^{n}$ endowed with the Hamming distance.
$\rho(\mathscr{C})$ is the minimum value r such that the union of the spheres of radius r about the codeword cover the ambient space.

APPLICATIONS: error correction, index coding, source coding.

First properties of the covering radius

Lemma

Let $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ be a code. The following hold.
(1) $0 \leq \rho(\mathscr{C}) \leq n$. Moreover, $\rho(\mathscr{C})=0$ if and only if $\mathscr{C}=\mathbb{F}_{q}^{n \times m}$.
(2) If $\mathscr{D} \subseteq \mathbb{F}_{q}^{n \times m}$ is a code with $\mathscr{C} \subseteq \mathscr{D}$, then $\rho(\mathscr{C}) \geq \rho(\mathscr{D})$.
(3) If $\mathscr{D} \subseteq \mathbb{F}_{q}^{n \times m}$ is a code with $\mathscr{C} \subsetneq \mathscr{D}$, then $\rho(\mathscr{C}) \geq d(\mathscr{D})$.

First properties of the covering radius

Lemma

Let $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ be a code. The following hold.
(1) $0 \leq \rho(\mathscr{C}) \leq n$. Moreover, $\rho(\mathscr{C})=0$ if and only if $\mathscr{C}=\mathbb{F}_{q}^{n \times m}$.
(2) If $\mathscr{D} \subseteq \mathbb{F}_{q}^{n \times m}$ is a code with $\mathscr{C} \subseteq \mathscr{D}$, then $\rho(\mathscr{C}) \geq \rho(\mathscr{D})$.
(3) If $\mathscr{D} \subseteq \mathbb{F}_{q}^{n \times m}$ is a code with $\mathscr{C} \subsetneq \mathscr{D}$, then $\rho(\mathscr{C}) \geq d(\mathscr{D})$.

A code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is maximal if $|\mathscr{C}|=1$ or $|\mathscr{C}| \geq 2$ and there is no code $\mathscr{D} \subseteq \mathbb{F}_{q}^{n \times m}$ with $\mathscr{D} \nsupseteq \mathscr{C}$ and $d(\mathscr{D})=d(\mathscr{C})$. In particular, $\mathbb{F}_{q}^{n \times m}$ is maximal.

Proposition

A code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ with $|\mathscr{C}| \geq 2$ is maximal if and only if $\rho(\mathscr{C}) \leq d(\mathscr{C})-1$.

Maximality

We introduce a parameter that measures the maximality of a code.

Definition

The maximality degree of a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ with $|\mathscr{C}| \geq 2$ is the integer defined by

$$
\mu(\mathscr{C}):=\left\{\begin{array}{cl}
\min \left\{d(\mathscr{C})-d(\mathscr{D}) \mid \mathscr{D} \subseteq \mathbb{F}_{q}^{n \times m} \text { is a code with } \mathscr{D} \nsupseteq \mathscr{C}\right\} & \text { if } \mathscr{C} \subsetneq \mathbb{F}_{q}^{n \times m}, \\
1 & \text { if } \mathscr{C}=\mathbb{F}_{q}^{n \times m} .
\end{array}\right.
$$

Maximality

We introduce a parameter that measures the maximality of a code.

Definition

The maximality degree of a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ with $|\mathscr{C}| \geq 2$ is the integer defined by

$$
\mu(\mathscr{C}):=\left\{\begin{array}{cl}
\min \left\{d(\mathscr{C})-d(\mathscr{D}) \mid \mathscr{D} \subseteq \mathbb{F}_{q}^{n \times m} \text { is a code with } \mathscr{D} \nsupseteq \mathscr{C}\right\} & \text { if } \mathscr{C} \subsetneq \mathbb{F}_{q}^{n \times m}, \\
1 & \text { if } \mathscr{C}=\mathbb{F}_{q}^{n \times m} .
\end{array}\right.
$$

We have:

- $\mu(\mathscr{C})$ is the "minimum price" (in terms of minimum distance) that one has to pay in order to enlarge \mathscr{C} to a bigger code,
- $0 \leq \mu(\mathscr{C}) \leq d(\mathscr{C})-1$,
- $\mu(\mathscr{C})>0$ if and only if \mathscr{C} is maximal.

Maximality

We introduce a parameter that measures the maximality of a code.

Definition

The maximality degree of a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ with $|\mathscr{C}| \geq 2$ is the integer defined by

$$
\mu(\mathscr{C}):=\left\{\begin{array}{cl}
\min \left\{d(\mathscr{C})-d(\mathscr{D}) \mid \mathscr{D} \subseteq \mathbb{F}_{q}^{n \times m} \text { is a code with } \mathscr{D} \supsetneq \mathscr{C}\right\} & \text { if } \mathscr{C} \subsetneq \mathbb{F}_{q}^{n \times m}, \\
1 & \text { if } \mathscr{C}=\mathbb{F}_{q}^{n \times m}
\end{array}\right.
$$

We have:

- $\mu(\mathscr{C})$ is the "minimum price" (in terms of minimum distance) that one has to pay in order to enlarge \mathscr{C} to a bigger code,
- $0 \leq \mu(\mathscr{C}) \leq d(\mathscr{C})-1$,
- $\mu(\mathscr{C})>0$ if and only if \mathscr{C} is maximal.

Proposition (Byrne-R.)

For any code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ with $|\mathscr{C}| \geq 2$ we have $\mu(\mathscr{C})=d(\mathscr{C})-\min \{\rho(\mathscr{C}), d(\mathscr{C})\}$. In particular, if \mathscr{C} is maximal then $\rho(\mathscr{C})=d(\mathscr{C})-\mu(\mathscr{C})$.

Translates of a code

For a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$, let $W_{i}(\mathscr{C}):=|\{M \in \mathscr{C} \mid \operatorname{rk}(M)=i\}|$.
The translate of a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ by a matrix $X \in \mathbb{F}_{q}^{n \times m}$ is the code

$$
\mathscr{C}+X:=\{M+X: M \in \mathscr{C}\} \subseteq \mathbb{F}_{q}^{n \times m}
$$

Remark

Full knowledge of the weight distribution of the translates of \mathscr{C} tells us the covering radius, as

$$
\rho(\mathscr{C})=\max _{X \in \mathbb{F}_{q}^{n \times m}} \min _{N \in \mathscr{C}+X} \operatorname{rk}(N)
$$

Even partial information may yield a bound on the covering radius.

Translates of a code

For a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$, let $W_{i}(\mathscr{C}):=|\{M \in \mathscr{C} \mid \operatorname{rk}(M)=i\}|$.
The translate of a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ by a matrix $X \in \mathbb{F}_{q}^{n \times m}$ is the code

$$
\mathscr{C}+X:=\{M+X: M \in \mathscr{C}\} \subseteq \mathbb{F}_{q}^{n \times m}
$$

Remark

Full knowledge of the weight distribution of the translates of \mathscr{C} tells us the covering radius, as

$$
\rho(\mathscr{C})=\max _{X \in \mathbb{F}_{q}^{n \times m}} \min _{N \in \mathscr{C}+X} \operatorname{rk}(N)
$$

Even partial information may yield a bound on the covering radius.
We now express the weight distribution

$$
W_{0}(\mathscr{C}+X), \ldots, W_{n}(\mathscr{C}+X)
$$

of the translate $\mathscr{C}+X$ of a linear code $\mathscr{C} \subsetneq \mathbb{F}_{q}^{k \times n}$ in terms of

$$
W_{0}(\mathscr{C}+X), \ldots, W_{n-d^{\perp}}(\mathscr{C}+X), \quad \text { where } d^{\perp}=d\left(\mathscr{C}^{\perp}\right)
$$

As an application, we obtain an upper bound on the covering radius of a linear code.

Translates of a code

Weight distribution of translates.

Theorem (Byrne-R.)

Let $\mathscr{C} \subsetneq \mathbb{F}_{q}^{n \times m}$ be a linear code, and let $X \in \mathbb{F}_{q}^{n \times m}$. Write $d^{\perp}:=d\left(\mathscr{C}^{\perp}\right)$.
Then for all $i \in\left\{n-d^{\perp}+1, \ldots, n\right\}$ we have

$$
\begin{aligned}
W_{i}(\mathscr{C}+X)= & \left.\sum_{u=0}^{n-d^{\perp}}(-1)^{i-u} q^{(i-u}{ }_{2}\right)
\end{aligned}\left[\begin{array}{l}
n-u \\
i-u
\end{array}\right]_{q} \sum_{j=0}^{u} W_{j}(\mathscr{C}+X)\left[\begin{array}{l}
n-j \\
u-j
\end{array}\right]_{q}+\quad . \quad \begin{aligned}
& \sum_{u=n-d^{\perp}+1}^{i}\left[\begin{array}{l}
n \\
u
\end{array}\right]_{q} \frac{|\mathscr{C}|}{q^{m(k-u)}} .
\end{aligned}
$$

In particular, the distance distribution of the translate $\mathscr{C}+X$ is completely determined by $n, m,|\mathscr{C}|$ and the weights $W_{0}(\mathscr{C}+X), \ldots, W_{n-d^{\perp}}(\mathscr{C}+X)$.

Translates of a code

Weight distribution of translates.

Theorem (Byrne-R.)

Let $\mathscr{C} \subsetneq \mathbb{F}_{q}^{n \times m}$ be a linear code, and let $X \in \mathbb{F}_{q}^{n \times m}$. Write $d^{\perp}:=d\left(\mathscr{C}^{\perp}\right)$.
Then for all $i \in\left\{n-d^{\perp}+1, \ldots, n\right\}$ we have

$$
\begin{aligned}
W_{i}(\mathscr{C}+X)= & \left.\sum_{u=0}^{n-d^{\perp}}(-1)^{i-u} q^{(i-u}{ }_{2}\right)
\end{aligned}\left[\begin{array}{l}
n-u \\
i-u
\end{array}\right]_{q} \sum_{j=0}^{u} W_{j}(\mathscr{C}+X)\left[\begin{array}{l}
n-j \\
u-j
\end{array}\right]_{q}+\quad . \quad \begin{aligned}
& \sum_{u=n-d^{\perp}+1}^{i}\left[\begin{array}{l}
n \\
u
\end{array}\right]_{q} \frac{|\mathscr{C}|}{q^{m(k-u)}} .
\end{aligned}
$$

In particular, the distance distribution of the translate $\mathscr{C}+X$ is completely determined by $n, m,|\mathscr{C}|$ and the weights $W_{0}(\mathscr{C}+X), \ldots, W_{n-d^{\perp}}(\mathscr{C}+X)$.

Let $X \in \mathbb{F}_{q}^{n \times m} \notin \mathscr{C}$ be arbitrary. Then $W_{0}(\mathscr{C}+X)=0$.
Apply the Theorem with $i:=n-d^{\perp}+1$ and obtain:

Translates of a code and dual distance bound

For $X \in \mathbb{F}_{q}^{n \times m} \notin \mathscr{C}$ arbitrary:

$$
\begin{aligned}
W_{n+d^{\perp}+1}(\mathscr{C}+X)= & \left.\sum_{u=1}^{n-d^{\perp}}(-1)^{i-u} q^{(i-u}\right)\left[\begin{array}{c}
n-u \\
i-u
\end{array}\right]_{q} \sum_{j=1}^{u} W_{j}(\mathscr{C}+X)\left[\begin{array}{c}
n-j \\
u-j
\end{array}\right]_{q}+ \\
& +\left[\begin{array}{c}
n \\
n-d^{\perp}+1
\end{array}\right]_{q}|\mathscr{C}| / q^{m\left(d^{\perp}-1\right)}
\end{aligned}
$$

Translates of a code and dual distance bound

For $X \in \mathbb{F}_{q}^{n \times m} \notin \mathscr{C}$ arbitrary:

$$
\left.\begin{array}{rl}
W_{n+d^{\perp}+1}(\mathscr{C}+X)= & \sum_{u=1}^{n-d^{\perp}}(-1)^{i-u} q^{(i-u} 2 \\
2
\end{array}\right)\left[\begin{array}{l}
n-u \\
i-u
\end{array}\right]_{q} \sum_{j=1}^{u} W_{j}(\mathscr{C}+X)\left[\begin{array}{c}
n-j \\
u-j
\end{array}\right]_{q}+\quad .
$$

In particular, $W_{1}(\mathscr{C}+X), \ldots, W_{n-d^{\perp}+1}(\mathscr{C}+X)$ cannot be all zero!
Since X was arbitrary, this implies the following.

Corollary (dual distance bound, Byrne-R.)

For any linear code $\mathscr{C} \subsetneq \mathbb{F}_{q}^{n \times m}$ we have $\rho(\mathscr{C}) \leq n-d\left(\mathscr{C}^{\perp}\right)+1$.

We have other bounds for linear / non-linear codes.

Initial sets

Let $a, b \in \mathbb{Z}_{>0}$ and $S \subseteq\{1, \ldots, a\} \times\{1, \ldots, b\}$. The characteristic matrix $\mathbb{I}(S) \in \mathbb{F}_{2}^{a \times b}$ of S is defined by

$$
\mathbb{I}(S)_{i j}:= \begin{cases}1 & \text { if }(i, j) \in S \\ 0 & \text { if }(i, j) \notin S\end{cases}
$$

Initial sets

Let $a, b \in \mathbb{Z}_{>0}$ and $S \subseteq\{1, \ldots, a\} \times\{1, \ldots, b\}$. The characteristic matrix $\mathbb{I}(S) \in \mathbb{F}_{2}^{a \times b}$ of S is defined by

$$
\mathbb{I}(S)_{i j}:= \begin{cases}1 & \text { if }(i, j) \in S \\ 0 & \text { if }(i, j) \notin S\end{cases}
$$

Moreover, we denote by $\lambda(S)$ the minimum number of lines (rows or columns) required to cover all the ones in $\mathbb{I}(S)$.

Example

Let $a=2, b=3$ and $S=\{(1,1),(1,2),(2,2),(2,3)\}$. Then

$$
\mathbb{I}(S):=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \in \mathbb{F}_{2}^{2 \times 3} \quad \text { and } \quad \lambda(S)=2
$$

Initial sets

Let $a, b \in \mathbb{Z}_{>0}$ and $S \subseteq\{1, \ldots, a\} \times\{1, \ldots, b\}$. The characteristic matrix $\mathbb{I}(S) \in \mathbb{F}_{2}^{a \times b}$ of S is defined by

$$
\mathbb{I}(S)_{i j}:= \begin{cases}1 & \text { if }(i, j) \in S \\ 0 & \text { if }(i, j) \notin S\end{cases}
$$

Moreover, we denote by $\lambda(S)$ the minimum number of lines (rows or columns) required to cover all the ones in $\mathbb{I}(S)$.

Example

Let $a=2, b=3$ and $S=\{(1,1),(1,2),(2,2),(2,3)\}$. Then

$$
\mathbb{I}(S):=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \in \mathbb{F}_{2}^{2 \times 3} \quad \text { and } \quad \lambda(S)=2
$$

The initial entry of a matrix $M \in \mathbb{F}_{q}^{n \times m}, M \neq 0$, is

$$
\operatorname{in}(M):=\min \left\{(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, m\} \mid M_{i j} \neq 0\right\} \quad \text { lexicographically. }
$$

Initial sets

Example

Let

$$
M:=\left[\begin{array}{lllll}
0 & 0 & 4 & 2 & 0 \\
1 & 0 & 3 & 2 & 1
\end{array}\right] \in \mathbb{F}_{5}^{2 \times 5}
$$

Then $\operatorname{in}(M)=(1,3)$.

Initial sets

Example

Let

$$
M:=\left[\begin{array}{lllll}
0 & 0 & 4 & 2 & 0 \\
1 & 0 & 3 & 2 & 1
\end{array}\right] \in \mathbb{F}_{5}^{2 \times 5}
$$

Then $\operatorname{in}(M)=(1,3)$.

Definition

The initial set of a non-zero linear code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is

$$
\operatorname{in}(\mathscr{C}):=\{\operatorname{in}(M) \mid M \in \mathscr{C}, M \neq 0\} \subseteq\{1, \ldots, n\} \times\{1, \ldots, m\}
$$

Initial sets

Example

Let

$$
M:=\left[\begin{array}{lllll}
0 & 0 & 4 & 2 & 0 \\
1 & 0 & 3 & 2 & 1
\end{array}\right] \in \mathbb{F}_{5}^{2 \times 5}
$$

Then $\operatorname{in}(M)=(1,3)$.

Definition

The initial set of a non-zero linear code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is

$$
\operatorname{in}(\mathscr{C}):=\{\operatorname{in}(M) \mid M \in \mathscr{C}, M \neq 0\} \subseteq\{1, \ldots, n\} \times\{1, \ldots, m\}
$$

First properties of the initial set.

Remark

Let $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ be a non-zero linear code. Then

$$
\operatorname{dim}(\mathscr{C})=|\operatorname{in}(\mathscr{C})|
$$

Initial set bound

Theorem (initial set bound, Byrne-R.)
Let $\{0\} \neq \mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ be a linear code. Let $S:=\{1, \ldots, n-d(\mathscr{C})+1\} \times\{1, \ldots, m\} \backslash$ in (\mathscr{C}). Then

$$
\rho(\mathscr{C}) \leq d(\mathscr{C})-1+\lambda(S) .
$$

Initial set bound

Theorem (initial set bound, Byrne-R.)

Let $\{0\} \neq \mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ be a linear code. Let $S:=\{1, \ldots, n-d(\mathscr{C})+1\} \times\{1, \ldots, m\} \backslash \operatorname{in}(\mathscr{C})$. Then

$$
\rho(\mathscr{C}) \leq d(\mathscr{C})-1+\lambda(S)
$$

Example

Let $q=2$ and $n=m=3$. Let \mathscr{C} be the linear code generated by

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] .
$$

We have $d(\mathscr{C})=2$ and $\operatorname{in}(\mathscr{C})=\{(1,1),(1,2),(2,1),(2,2)\}$.

Initial set bound

Theorem (initial set bound, Byrne-R.)

Let $\{0\} \neq \mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ be a linear code. Let $S:=\{1, \ldots, n-d(\mathscr{C})+1\} \times\{1, \ldots, m\} \backslash$ in (\mathscr{C}). Then

$$
\rho(\mathscr{C}) \leq d(\mathscr{C})-1+\lambda(S)
$$

Example

Let $q=2$ and $n=m=3$. Let \mathscr{C} be the linear code generated by

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] .
$$

We have $d(\mathscr{C})=2$ and $\operatorname{in}(\mathscr{C})=\{(1,1),(1,2),(2,1),(2,2)\}$. Therefore

$$
S=\{1, \ldots, 2\} \times\{1, \ldots, 3\} \backslash \operatorname{in}(\mathscr{C})=\{(1,3),(2,3)\}, \quad \mathbb{I}(S)=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Initial set bound

Theorem (initial set bound, Byrne-R.)

Let $\{0\} \neq \mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ be a linear code. Let $S:=\{1, \ldots, n-d(\mathscr{C})+1\} \times\{1, \ldots, m\} \backslash$ in (\mathscr{C}). Then

$$
\rho(\mathscr{C}) \leq d(\mathscr{C})-1+\lambda(S) .
$$

Example

Let $q=2$ and $n=m=3$. Let \mathscr{C} be the linear code generated by

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] .
$$

We have $d(\mathscr{C})=2$ and $\operatorname{in}(\mathscr{C})=\{(1,1),(1,2),(2,1),(2,2)\}$. Therefore

$$
S=\{1, \ldots, 2\} \times\{1, \ldots, 3\} \backslash \operatorname{in}(\mathscr{C})=\{(1,3),(2,3)\}, \quad \mathbb{I}(S)=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

So $\lambda(S)=1$ and (by the Theorem) $\rho(\mathscr{C}) \leq d(\mathscr{C})-1+\lambda(S)=2$.
The other bounds give $\rho(\mathscr{C}) \leq 3$.

Other results

If $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is a linear code of dimension k and $m \gg 0$, then we can say what the "expected" covering radius of \mathscr{C} is for $q \rightarrow+\infty$.

Other results

If $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is a linear code of dimension k and $m \gg 0$, then we can say what the "expected" covering radius of \mathscr{C} is for $q \rightarrow+\infty$.

Theorem (Byrne-R.)

Let $0 \leq k \leq n m$ be an integer. Denote by \mathscr{F} the family of linear codes $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ of dimension k, and let $\rho_{k}:=n-\lfloor k / m\rfloor$. Let $\mathscr{F}^{\prime}:=\left\{\mathscr{C} \in \mathscr{F} \mid \rho(\mathscr{C})=\rho_{k}\right\}$. Then

$$
\lim _{q \rightarrow+\infty} \frac{\left|\mathscr{F}^{\prime}\right|}{|\mathscr{F}|}=1 \quad \text { whenever } \quad k<(m-n+\lfloor k / m\rfloor+1)(\lfloor k / m\rfloor+1)
$$

Other results

If $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ is a linear code of dimension k and $m \gg 0$, then we can say what the "expected" covering radius of \mathscr{C} is for $q \rightarrow+\infty$.

Theorem (Byrne-R.)

Let $0 \leq k \leq n m$ be an integer. Denote by \mathscr{F} the family of linear codes $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ of dimension k, and let $\rho_{k}:=n-\lfloor k / m\rfloor$. Let $\mathscr{F}^{\prime}:=\left\{\mathscr{C} \in \mathscr{F} \mid \rho(\mathscr{C})=\rho_{k}\right\}$. Then

$$
\lim _{q \rightarrow+\infty} \frac{\left|\mathscr{F}^{\prime}\right|}{|\mathscr{F}|}=1 \quad \text { whenever } \quad k<(m-n+\lfloor k / m\rfloor+1)(\lfloor k / m\rfloor+1) .
$$

Thank you for your attention!

