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A (rank-metric) code is a non-empty subset ¥’ CFg*™.  We assume n<m w.l.o.g.
The (rank) distance between matrices M, N € Fg*™ is tk(M — N).
If |€| > 2, then the minimum distance of ¢ is

d(%) := min{rk(M—N) | M,N € €, M #£ N}.
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What is linear network coding?
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Network coding: data transmission over (possibly noisy/lossy/adversarial) networks.




Network ~~ directed acyclic multi-graph:

o The source & sends messages vi,Vo,..., v, € ]Fg’

@ The sinks & demand all the messages (multicast)

@ The nodes ® forward linear combinations of the received inputs.

Rank-metric codes allow error correction in this context.
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Silva, Kschishang, On metrics for error correction in network coding. |EEE Tran. IT, ‘09.



A model for network communications

R., Kschischang, Adversarial network coding. |IEEE Tran. IT, ‘18.

@ Mathematical framework for network coding with adversaries of different types.
@ Rigorous definition of adversarial capacities of a network.

@ Various communication models.

o Difference between “code” and “network code” and separability results.

@ One source vs. multiple sources (interference).

@ Techniques to prove bounds.

o Constructions.

@ Open problems.



Back to the mathematical theory of rank-metric codes...

Byrne, R., Covering radius of matrix codes endowed with the rank metric.
SIAM J. Discrete Math. ‘17.

Byrne, R., Partition-balanced families of codes and density problems in coding theory.
Preprint ‘18.

The covering radius of a code ¢ CFg*™ is the integer

p(%) :=min{i € N|for all X € Fg*" there exists M € ¢ with d(X,M) < i}
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Definition
The covering radius of a code € CFg*™ is the integer

p(%) :=min{i € N|for all X € Fg*™ there exists M € € with d(X,M) </}

This the rank-analogue of the covering radius of a code C C Fg endowed with the
Hamming distance.

p(%) is the minimum value r such that the union of the spheres of radius r about the
codeword cover the ambient space.

APPLICATIONS: error correction, index coding, source coding.



Let ¥ CF2*™ be a code. The following hold.
q

@ 0<p(%) < n. Moreover, p(¢’) =0 if and only if ¢ =Fg*™.
Q If 2 CFg*™ is a code with € C 2, then p(%) > p(2).

Q If 2 CFg*™ is a code with ¢ C 9, then p(¥) > d(2).



Let ¥ C IE‘ZX"’ be a code. The following hold.

@ 0<p(%) < n. Moreover, p(¢’) =0 if and only if ¢ =Fg*™.
Q If 2 CTFg*™ is a code with ¢ C 9, then p(%) > p(2).

Q If 2 CFg*™ is a code with ¢ C 9, then p(¥) > d(2).

A code ¥ CTFg*™ is maximal if || = 1 or |€'| > 2 and there is no code 2 CFg*™ with
2 2 %€ and d(2) =d(%). In particular, Fg*™ is maximal.

A code & CTFg*™ with |%'| > 2 is maximal if and only if p(%") < d(%)—1.



We introduce a parameter that measures the maximality of a code.

The maximality degree of a code ¢ CFg*'™ with || > 2 is the integer defined by

min{d(¢)—d(2) | 2 CFg*™ is a code with 2 2 €}  if € CFg*",
1 if € = F<m.

u(%) :={
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We have:

o (%) is the “minimum price” (in terms of minimum distance) that one has to pay in
order to enlarge % to a bigger code,

0 0<p(¥)<d(®)-1,
@ u(¥) >0 if and only if € is maximal.
Proposition (Byrne-R.)

For any code & CFg*™ with |€'| > 2 we have u(%) = d(%) —min{p(%), d(¥)}.
In particular, if € is maximal then p(%) = d(¢) — u(%).



Translates of a code

For a code € CTFg*™, let Wi(¥) :=[{M € ¢ k(M) = i}|.

The translate of a code ¥ C ngm by a matrix X € ngm is the code
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Full knowledge of the weight distribution of the translates of % tells us the covering
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Even partial information may yield a bound on the covering radius.
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For a code € CTFg*™, let Wi(¥) :=[{M € ¢ k(M) = i}|.

The translate of a code ¥ C ngm by a matrix X € ngm is the code

C+X:={M+X: MECK}QFQX"’.

Full knowledge of the weight distribution of the translates of % tells us the covering

radius, as

%)= max min  tk(N).
p(#) XeFpm  NEG+X (M)

Even partial information may yield a bound on the covering radius.
We now express the weight distribution
Wo(€ + X),..., Wp(€ + X)
of the translate ¥ + X of a linear code € C IFSX” in terms of
Wo(€+X),... W, 4 (€+X),  where dt =d(€").

As an application, we obtain an upper bound on the covering radius of a linear code.



Translates of a code

Weight distribution of translates.
Theorem (Byrne-R.)

Let ¥ C Fg*™ be a linear code, and let X € Fg*™.  Write d*- := d(%).
Then for all i € {n—d*+1,...,n} we have
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In particular, the distance distribution of the translate ¥ + X is completely determined by
n, m, |€| and the weights Wo (% + X), ..., W,_4.(¢ + X).
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In particular, the distance distribution of the translate ¥ + X is completely determined by
n, m, |€| and the weights Wo (% + X), ..., W,_4.(¢ + X).

Let X € Fg*™ ¢ € be arbitrary. Then Wp(%¢' +X) =0.

Apply the Theorem with i:=n—d*-+1 and obtain:
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For X e Fg*™ ¢ € arbitrary:

+
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In particular, W1(%€ + X),..., W,_4:,1(€ + X) cannot be all zero!

Since X was arbitrary, this implies the following.

For any linear code ¢ C Fg*™ we have p(¢) < n— d(€+)+1.

We have other bounds for linear / non-linear codes.



Let a,b€Z~g and S C{1,...,a} x{1,...,b}. The characteristic matrix I(S) € IFSXb of S
is defined by

1 if(ij)€eSs,

1(S)i ::{ 0 if(ij)¢S



Initial sets
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Initial sets

Let a,b€Z~g and S C{1,...,a} x {1,...,b}. The characteristic matrix I(S) € IE‘;Xb of S
is defined by
1 if(ij)es,
sy =4 b 10D
0 if(i,j)¢S

Moreover, we denote by A(S) the minimum number of lines (rows or columns) required
to cover all the ones in I(S).
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The initial entry of a matrix M € Fg*™, M #0, is

in(M) :==min{(i,j) € {1,...,n} x {1,...,m} | Mj; #0} lexicographically.



Let
4
M;:OO 206]F§X5
1 0 3 2 1

Then in(M) = (1,3).



Let

M= 042 0] g
103 21

Then in(M) = (1,3).

The initial set of a non-zero linear code ¢ C ng”' is

in(¢):={in(M) | Me€, M#£0} C{1,..,n}x{1,..,m}.



Let

4 2
M= 0 Ol ep2s
1 0 3 2 1

Then in(M) = (1,3).

The initial set of a non-zero linear code ¢ C ng”' is
in(¢):={in(M) | Me€, M#£0} C{1,..,n}x{1,..,m}.

First properties of the initial set.

Let ¥ C IFZX"’ be a non-zero linear code. Then

dim(%) = [in(%)|.



Let {0} #% CFg*™ be a linear code. Let S:={1,...,n—d(%)+1} x {1,....m}\in(%).
Then
p(€) <d(€)—1+A(S).



Initial set bound

Theorem (initial set bound, Byrne-R.)
Let {0} # % CFg*™ be a linear code. Let S:={1,....,n—d(%)+1} x{1,...,m}\in(%).

Then
p(€) <d(€)—1+A(S).

Let g=2and n=m=3. Let ¥ be the linear code generated by

1 0 O 0 1 0 0 0 O 0 0 O
0 0 1|, 0 0 O0f, 1 0 Of, 0o 1 1§.
0 0 O 1 0 O 0 1 0 1 0 O

We have d(%) =2 and in(¢)=1{(1,1),(1,2),(2,1),(2,2)}.
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Initial set bound

Theorem (initial set bound, Byrne-R.)
Let {0} # % CFg*™ be a linear code. Let S:={1,....,n—d(%)+1} x{1,...,m}\in(%).

Then
p(€) <d(€)—1+A(S).

Let g=2and n=m=3. Let ¥ be the linear code generated by

1 0 O 0 1 0 0 0 O 0 0 O
0 0 1}, 0 0 0, 1 0 O0f, 0 1 1].
0 0 O 1 0 O 0 1 0 1 0 O
We have d(%) =2 and in(¢)=1{(1,1),(1,2),(2,1),(2,2)}. Therefore
S={1,..2} x {1,..3}\in(®) = {(1,3),23)}, 1(S)=]|" ° 1}

0 0 1
So A(S) =1 and (by the Theorem) p(%)<d(%)—1+A(S)=2.
The other bounds give p(%) < 3.
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Let 0 < k < nm be an integer. Denote by F the family of linear codes ¢ C Fg*™ of
dimension k, and let py :=n— |k/m]. Let F':={€ € F |p(€)=pk}. Then

. |Z B
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Other results

If € C ng’" is a linear code of dimension k and m > 0, then we can say what the
“expected” covering radius of € is for g — +-oo.

Theorem (Byrne-R.)

Let 0 < k < nm be an integer. Denote by F the family of linear codes & C Fg*'™ of
dimension k, and let py :=n— |k/m|. Let F':={€ € .F |p(€)=pk}. Then

im 7] _

g—teo | F|

1 whenever k<(m—n+|k/m|+1)(|k/m|+1).

Thank you for your attention!



