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Rank-metric codes

Definition

A (rank-metric) code is a non-empty subset C ⊆ Fn×mq . We assume n ≤m w.l.o.g.

The (rank) distance between matrices M,N ∈ Fn×m
q is rk(M−N).

If |C | ≥ 2, then the minimum distance of C is

d(C ) := min{rk(M−N) |M,N ∈ C ,M 6= N}.

We say that C ⊆ Fn×mq is linear if it is an Fq-subspace of Fn×m
q . In this case the dual of

C is the linear code

C⊥ := {N ∈ Fn×mq : Tr(MNt) = 0 for all M ∈ C } ⊆ Fn×mq .

Studied by Delsarte for combinatorial interest via association schemes.

Further studied independently by Gabidulin and Roth.

Re-discovered by Kötter, Kschischang, Silva and applied to linear network coding.

What is linear network coding?
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What is network coding about?

Network coding: data transmission over (possibly noisy/lossy/adversarial) networks.
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A model for network communications

Network  directed acyclic multi-graph:

The source sends messages v1,v2, ...,vn ∈ Fm
q

The sinks demand all the messages (multicast)

The nodes forward linear combinations of the received inputs.

Rank-metric codes allow error correction in this context.



A model for network communications

Organize v1, ...,vn as the rows of a matrix M :=


v1

v2
...

vn

 ∈ Fn×mq .

Measure the distance between M,N ∈ Fn×m
q as rk(M−N).

Why does this make sense?

Silva, Kschishang, On metrics for error correction in network coding. IEEE Tran. IT, ‘09.
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A model for network communications

R., Kschischang, Adversarial network coding. IEEE Tran. IT, ‘18.

Mathematical framework for network coding with adversaries of different types.

Rigorous definition of adversarial capacities of a network.

Various communication models.

Difference between “code” and “network code” and separability results.

One source vs. multiple sources (interference).

Techniques to prove bounds.

Constructions.

Open problems.



Covering Radius

Back to the mathematical theory of rank-metric codes...

Byrne, R., Covering radius of matrix codes endowed with the rank metric.
SIAM J. Discrete Math. ‘17.

Byrne, R., Partition-balanced families of codes and density problems in coding theory.
Preprint ‘18.

Definition

The covering radius of a code C ⊆ Fn×mq is the integer

ρ(C ) := min{i ∈ N | for all X ∈ Fn×m
q there exists M ∈ C with d(X ,M)≤ i}

This the rank-analogue of the covering radius of a code C ⊆ Fnq endowed with the
Hamming distance.

ρ(C ) is the minimum value r such that the union of the spheres of radius r about the
codeword cover the ambient space.

APPLICATIONS: error correction, index coding, source coding.
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First properties of the covering radius

Lemma

Let C ⊆ Fn×m
q be a code. The following hold.

1 0≤ ρ(C )≤ n. Moreover, ρ(C ) = 0 if and only if C = Fn×m
q .

2 If D ⊆ Fn×mq is a code with C ⊆D , then ρ(C )≥ ρ(D).

3 If D ⊆ Fn×mq is a code with C ( D , then ρ(C )≥ d(D).

A code C ⊆ Fn×mq is maximal if |C |= 1 or |C | ≥ 2 and there is no code D ⊆ Fn×mq with
D ! C and d(D) = d(C ). In particular, Fn×m

q is maximal.

Proposition

A code C ⊆ Fn×mq with |C | ≥ 2 is maximal if and only if ρ(C )≤ d(C )−1.
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Maximality

We introduce a parameter that measures the maximality of a code.

Definition

The maximality degree of a code C ⊆ Fn×m
q with |C | ≥ 2 is the integer defined by

µ(C ) :=

{
min{d(C )−d(D) | D ⊆ Fn×mq is a code with D ! C } if C ( Fn×m

q ,

1 if C = Fn×m
q .

We have:

µ(C ) is the “minimum price” (in terms of minimum distance) that one has to pay in
order to enlarge C to a bigger code,

0≤ µ(C )≤ d(C )−1,

µ(C ) > 0 if and only if C is maximal.

Proposition (Byrne-R.)

For any code C ⊆ Fn×m
q with |C | ≥ 2 we have µ(C ) = d(C )−min{ρ(C ), d(C )}.

In particular, if C is maximal then ρ(C ) = d(C )−µ(C ).
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Translates of a code

For a code C ⊆ Fn×mq , let Wi (C ) := |{M ∈ C | rk(M) = i}|.

The translate of a code C ⊆ Fn×mq by a matrix X ∈ Fn×m
q is the code

C +X := {M +X : M ∈ C } ⊆ Fn×mq .

Remark

Full knowledge of the weight distribution of the translates of C tells us the covering
radius, as

ρ(C ) = max
X∈Fn×m

q

min
N∈C+X

rk(N).

Even partial information may yield a bound on the covering radius.

We now express the weight distribution

W0(C +X ), ...,Wn(C +X )

of the translate C +X of a linear code C ( Fk×n
q in terms of

W0(C +X ), ...,Wn−d⊥(C +X ), where d⊥ = d(C⊥).

As an application, we obtain an upper bound on the covering radius of a linear code.
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Translates of a code

Weight distribution of translates.

Theorem (Byrne-R.)

Let C ( Fn×m
q be a linear code, and let X ∈ Fn×mq . Write d⊥ := d(C⊥).

Then for all i ∈ {n−d⊥+ 1, ...,n} we have

Wi (C +X ) =
n−d⊥

∑
u=0

(−1)i−uq(i−u2 )

[
n−u

i −u

]
q

u

∑
j=0

Wj (C +X )

[
n− j

u− j

]
q

+

+
i

∑
u=n−d⊥+1

[
n

u

]
q

|C |
qm(k−u) .

In particular, the distance distribution of the translate C +X is completely determined by
n, m, |C | and the weights W0(C +X ), ...,Wn−d⊥(C +X ).

Let X ∈ Fn×mq /∈ C be arbitrary. Then W0(C +X ) = 0.

Apply the Theorem with i := n−d⊥+ 1 and obtain:
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Translates of a code and dual distance bound

For X ∈ Fn×m
q /∈ C arbitrary:

Wn+d⊥+1(C +X ) =
n−d⊥

∑
u=1

(−1)i−uq(i−u2 )

[
n−u

i −u

]
q

u

∑
j=1

Wj (C +X )

[
n− j

u− j

]
q

+

+

[
n

n−d⊥+ 1

]
q

|C |/qm(d⊥−1).

In particular, W1(C +X ), ...,Wn−d⊥+1(C +X ) cannot be all zero!

Since X was arbitrary, this implies the following.

Corollary (dual distance bound, Byrne-R.)

For any linear code C ( Fn×m
q we have ρ(C )≤ n−d(C⊥) + 1.

We have other bounds for linear / non-linear codes.
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Initial sets

Let a,b ∈ Z>0 and S ⊆ {1, ...,a}×{1, ...,b}. The characteristic matrix I(S) ∈ Fa×b2 of S
is defined by

I(S)ij :=

{
1 if (i , j) ∈ S ,

0 if (i , j) /∈ S

Moreover, we denote by λ (S) the minimum number of lines (rows or columns) required
to cover all the ones in I(S).

Example

Let a = 2, b = 3 and S = {(1,1),(1,2),(2,2),(2,3)}. Then

I(S) :=

[
1 1 0

0 1 1

]
∈ F2×32 and λ (S) = 2.

The initial entry of a matrix M ∈ Fn×mq , M 6= 0, is

in(M) := min{(i , j) ∈ {1, ...,n}×{1, ...,m} |Mij 6= 0} lexicographically.
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Initial sets

Example

Let

M :=

[
0 0 4 2 0

1 0 3 2 1

]
∈ F2×55

Then in(M) = (1,3).

Definition

The initial set of a non-zero linear code C ⊆ Fn×m
q is

in(C ) := {in(M) |M ∈ C , M 6= 0} ⊆ {1, ...,n}×{1, ...,m}.

First properties of the initial set.

Remark

Let C ⊆ Fn×m
q be a non-zero linear code. Then

dim(C ) = |in(C )|.
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Initial set bound

Theorem (initial set bound, Byrne-R.)

Let {0} 6= C ⊆ Fn×m
q be a linear code. Let S := {1, ...,n−d(C ) + 1}×{1, ...,m}\ in(C ).

Then
ρ(C )≤ d(C )−1 + λ (S).

Example

Let q = 2 and n = m = 3. Let C be the linear code generated by1 0 0

0 0 1

0 0 0

 ,

0 1 0

0 0 0

1 0 0

 ,

0 0 0

1 0 0

0 1 0

 ,

0 0 0

0 1 1

1 0 0

 .

We have d(C ) = 2 and in(C ) = {(1,1),(1,2),(2,1),(2,2)}. Therefore

S = {1, ...,2}×{1, ...,3}\ in(C ) = {(1,3),(2,3)}, I(S) =

[
0 0 1

0 0 1

]
So λ (S) = 1 and (by the Theorem) ρ(C )≤ d(C )−1 + λ (S) = 2.

The other bounds give ρ(C )≤ 3.
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So λ (S) = 1 and (by the Theorem) ρ(C )≤ d(C )−1 + λ (S) = 2.

The other bounds give ρ(C )≤ 3.



Initial set bound

Theorem (initial set bound, Byrne-R.)

Let {0} 6= C ⊆ Fn×m
q be a linear code. Let S := {1, ...,n−d(C ) + 1}×{1, ...,m}\ in(C ).

Then
ρ(C )≤ d(C )−1 + λ (S).
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S = {1, ...,2}×{1, ...,3}\ in(C ) = {(1,3),(2,3)}, I(S) =

[
0 0 1

0 0 1

]
So λ (S) = 1 and (by the Theorem) ρ(C )≤ d(C )−1 + λ (S) = 2.

The other bounds give ρ(C )≤ 3.



Other results

If C ⊆ Fn×m
q is a linear code of dimension k and m� 0, then we can say what the

“expected” covering radius of C is for q→+∞.

Theorem (Byrne-R.)

Let 0≤ k ≤ nm be an integer. Denote by F the family of linear codes C ⊆ Fn×m
q of

dimension k, and let ρk := n−bk/mc. Let F ′ := {C ∈F | ρ(C ) = ρk}. Then

lim
q→+∞

|F ′|
|F |

= 1 whenever k < (m−n+ bk/mc+ 1)(bk/mc+ 1).

Thank you for your attention!
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