Network Coding, Rank-Metric Codes, and Rook Theory

Alberto Ravagnani

University College Dublin

USF, Dec. 2019

Outline

Network coding

2 Rank-metric codes and topics in combinatorics

Outline

Network coding

2 Rank-metric codes and topics in combinatorics

Network coding: data transmission over networks (streaming, patches distribution, ...)

Network coding: data transmission over networks (streaming, patches distribution, ...)

- ullet One source S attempts to transmit messages $v_1,...,v_n\in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

Network coding: data transmission over networks (streaming, patches distribution, ...)

- One source S attempts to transmit messages $v_1,...,v_n \in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

What should the nodes do?

Network coding: data transmission over networks (streaming, patches distribution, ...)

- ullet One source S attempts to transmit messages $v_1,...,v_n\in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).

4 D > 4 A > 4 B > 4 B > B = 4 9 0 0

Network coding: data transmission over networks (streaming, patches distribution, ...)

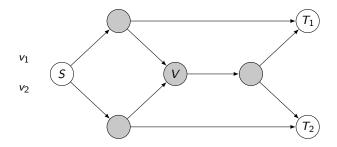
- ullet One source S attempts to transmit messages $v_1,...,v_n\in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

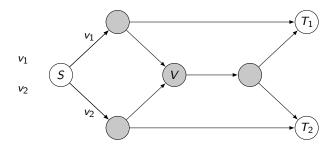
What should the nodes do?

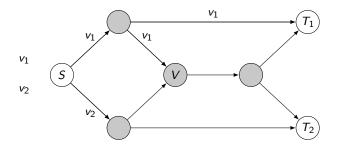
Goal

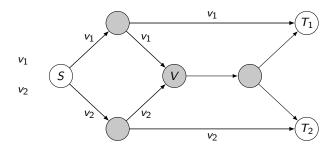
Maximize the messages that are transmitted to **all** terminals per channel use (rate).

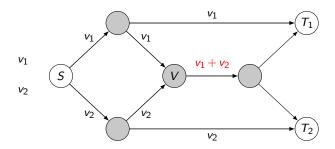
IDEA (Ahlswede-Cai-Li-Yeung 2000): allow the nodes to recombine packets.

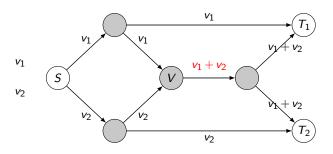












This strategy is better than routing.

2 / 25

Min-cut bound

- N the network
- S the source
- \bullet $\textbf{T} = \{\textit{T}_1, ..., \textit{T}_M\}$ the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)

The (multicast) rate of any communication over ${\mathscr N}$ satisfies

$$\mathsf{rate} \leq \mu(\mathscr{N}) := \mathsf{min}\{\mathsf{min\text{-}cut}(S, T_i) \mid 1 \leq i \leq M\},\$$

where min-cut(S, T_i) is the min. # of edges that one has to remove in $\mathscr N$ to disconnect S and T_i .

Min-cut bound

- N the network
- S the source
- $T = \{T_1, ..., T_M\}$ the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)

The (multicast) rate of any communication over ${\mathscr N}$ satisfies

$$\mathsf{rate} \leq \mu(\mathscr{N}) := \mathsf{min}\{\mathsf{min\text{-}cut}(S, T_i) \mid 1 \leq i \leq M\},\$$

where min-cut(S, T_i) is the min. # of edges that one has to remove in $\mathscr N$ to disconnect S and T_i .

Question

Can we design node operations (network code) so that the bound is achieved?

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Min-cut bound

- N the network
- S the source
- $T = \{T_1, ..., T_M\}$ the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)

The (multicast) rate of any communication over ${\mathscr N}$ satisfies

$$\mathsf{rate} \leq \mu(\mathscr{N}) := \mathsf{min} \{ \mathsf{min\text{-}cut}(S, T_i) \ | \ 1 \leq i \leq M \},$$

where min-cut(S, T_i) is the min. # of edges that one has to remove in $\mathscr N$ to disconnect S and T_i .

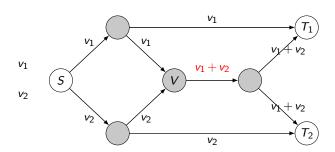
Question

Can we design node operations (network code) so that the bound is achieved?

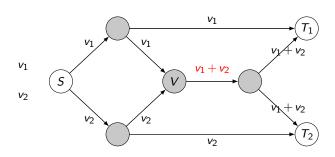
YES, if $q \gg 0$. In fact, **linear operations** suffice.

4 D > 4 D > 4 E > 4 E > E 990

Example



Example



$$\mathsf{min\text{-}cut}(S,T_1) = \mathsf{min\text{-}cut}(S,T_2) = 2 \quad \Rightarrow \quad \mu(\mathscr{N}) = 2.$$

Therefore the strategy is optimal over any field \mathbb{F}_q .

Moreover, the node operations are linear.

(not the max-flow-min-cut theorem from graph theory)

(not the max-flow-min-cut theorem from graph theory)

Let $\mathscr N$ be a network, and let $n = \mu(\mathscr N)$. Assume that:

- ullet the source S sends messages $v_1,...,v_n\in \mathbb{F}_q^n$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- terminal T collects $w_1^T, ..., w_{r(T)}^T$ from the incoming edges.

(not the max-flow-min-cut theorem from graph theory)

Let $\mathscr N$ be a network, and let $n = \mu(\mathscr N)$. Assume that:

- ullet the source S sends messages $v_1,...,v_n\in \mathbb{F}_q^n$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- terminal T collects $w_1^T, ..., w_{r(T)}^T$ from the incoming edges.

Then we can write:

$$\begin{bmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_{r(T)}^T \end{bmatrix} = G(T) \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix},$$

where $G(T) \in \mathbb{F}_q^{r(T) \times n}$ is the **transfer matrix** at T, describing all linear nodes operations.

(not the max-flow-min-cut theorem from graph theory)

Let $\mathcal N$ be a network, and let $n = \mu(\mathcal N)$. Assume that:

- ullet the source S sends messages $v_1,...,v_n\in \mathbb{F}_q^n,$
- the nodes perform linear operations (linear network coding) on the received inputs,
- terminal T collects $w_1^T, ..., w_{r(T)}^T$ from the incoming edges.

Then we can write:

$$\begin{bmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_{r(T)}^T \end{bmatrix} = G(T) \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix},$$

where $G(T) \in \mathbb{F}_q^{r(T) \times n}$ is the **transfer matrix** at T, describing all linear nodes operations.

Theorem (Li-Yeung-Cai 2002; Kötter-Médard 2003)

- **1** Without loss of generality, $r(T) = n = \mu(\mathcal{N})$ for all $T \in \mathbf{T}$.
- ② If $q \ge |T|$, then there exist linear nodes operations such that G(T) is a $n \times n$ invertible matrix for each terminal $T \in T$, **simultaneously**.

Let
$$n = \mu(\mathcal{N})$$
.

where $G(T) \in \mathbb{F}_q^{n \times n}$ is invertible for every $T \in \mathbf{T}$ $(q \gg 0)$.

Let
$$n = \mu(\mathcal{N})$$
.

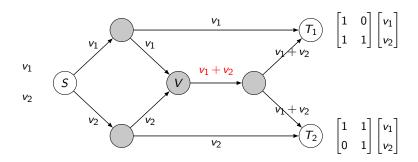
where $G(T) \in \mathbb{F}_q^{n \times n}$ is invertible for every $T \in \mathbf{T}$ $(q \gg 0)$.

Decoding

$$\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = G(T)^{-1} \left(G(T) \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \right).$$

Each terminal $T \in \mathbf{T}$ computes the inverse of its own transfer matrix G(T).

4ロト 4回ト 4 差ト 4 差ト 差 り9℃

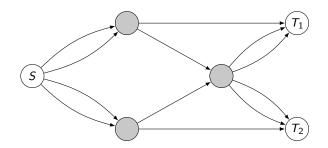


The model

One adversary can change the value of up to t edges (t is the adversarial strength).

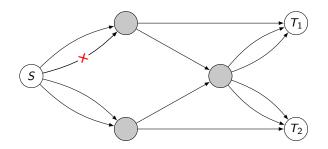
The model

One adversary can change the value of up to t edges (t is the adversarial strength).



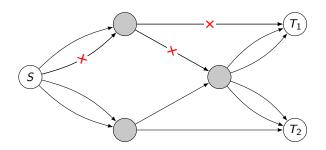
The model

One adversary can change the value of up to t edges (t is the adversarial strength).



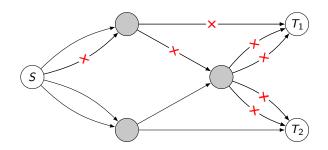
The model

One adversary can change the value of up to t edges (t is the adversarial strength).



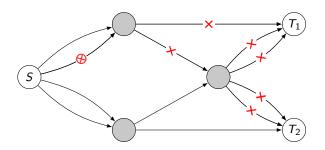
The model

One adversary can change the value of up to t edges (t is the adversarial strength).



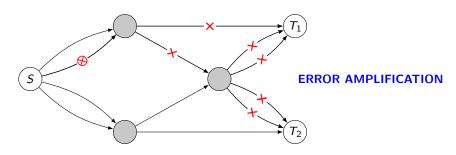
The model

One adversary can change the value of up to t edges (t is the adversarial strength).



The model

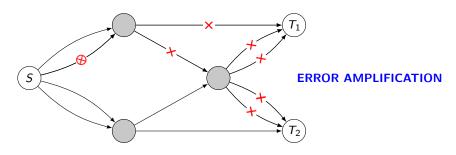
One adversary can change the value of up to t edges (t is the adversarial strength).



The model

One adversary can change the value of up to t edges (t is the adversarial strength).

Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., *Adversarial Network Coding*, IEEE Trans. Inf. Th. 2018.

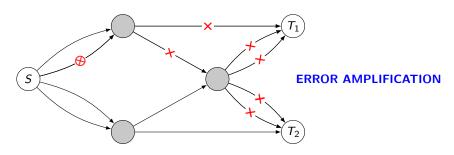


Natural solution: design the node operations carefully (decoding at intermediate nodes).

The model

One adversary can change the value of up to t edges (t is the adversarial strength).

Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.



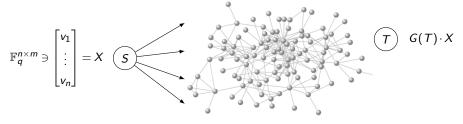
Natural solution: design the node operations carefully (decoding at intermediate nodes). Other solution: use rank-metric codes.

Suppose we use <u>linear</u> network coding, $n = \mu(\mathcal{N})$.

Suppose we use <u>linear</u> network coding, $n = \mu(\mathcal{N})$.

 $G(T) \in \mathbb{F}_q^{n \times n}$ is invertible for all $T \in \mathbf{T}$ $(q \gg 0)$.

Suppose we use <u>linear</u> network coding, $n = \mu(\mathcal{N})$.



 $G(T) \in \mathbb{F}_q^{n \times n}$ is invertible for all $T \in \mathbf{T}$ $(q \gg 0)$.

In an error-free context: X is sent, $G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$. If errors occur: X is sent, $Y(T) \neq G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.

Suppose we use <u>linear</u> network coding, $n = \mu(\mathcal{N})$.

$$\mathbb{F}_q^{n \times m} \ni \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = X \quad S$$

 $G(T) \in \mathbb{F}_q^{n \times n}$ is invertible for all $T \in \mathbf{T}$ $(q \gg 0)$.

In an error-free context: X is sent, $G(T) \cdot X$ is received by terminal $T \in T$. If errors occur: X is sent, $Y(T) \neq G(T) \cdot X$ is received by terminal $T \in T$.

Theorem (Silva-Kschischang-Koetter 2008)

If at most t edges were corrupted, then $\operatorname{rk}(Y(T) - G(T) \cdot X) \leq t$ for all $T \in T$.

4日 → 4団 → 4 豆 → 4 豆 → 9 へ ○

Suppose we use <u>linear</u> network coding, $n = \mu(\mathcal{N})$.

$$\mathbb{F}_q^{n \times m} \ni \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = X \quad S$$

$$G(T) \in \mathbb{F}_q^{n imes n}$$
 is invertible for all $T \in \mathbf{T}$ $(q \gg 0)$.

In an error-free context: X is sent, $G(T) \cdot X$ is received by terminal $T \in T$. **If errors occur:** X is sent, $Y(T) \neq G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.

Theorem (Silva-Kschischang-Koetter 2008)

If at most t edges were corrupted, then $\operatorname{rk}(Y(T) - G(T) \cdot X) \leq t$ for all $T \in T$.

IDEA: use the rank metric as a measure of the discrepancy between Y(T) and $G(T) \cdot X$.

$$d_{\mathsf{rk}}(A,B) = \mathsf{rk}(A-B).$$

Definition

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, \, X \neq 0\}.$$

Definition

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

Communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding
- (3) separable: network code and rank-metric code can be designed independently

Definition

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

Communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding
- (3) separable: network code and rank-metric code can be designed independently

Theorem (R.-Kschischang)

For more general scenarios, there is no capacity-achieving scheme with (2) and (3).

E.g., multiple adversaries, erasure adversaries, or restricted adversaries.

We study these in Adversarial Network Coding, IEEE Trans. Inf. Th. 2018

Definition

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

Communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding
- (3) separable: network code and rank-metric code can be designed independently

Theorem (R.-Kschischang)

For more general scenarios, there is no capacity-achieving scheme with (2) and (3).

E.g., multiple adversaries, erasure adversaries, or restricted adversaries. We study these in *Adversarial Network Coding*, IEEE Trans. Inf. Th. 2018

ACHTUNG! Noise is **adversarial**. Probabilistic models require different methods.

10 / 25

PROBABILISTIC INFORMATION THEORY	ZERO-ERROR INFORMATION THEORY
noise follows a probability distribution (e.g., binary symmetric channel)	noise is adversarial
allow small probability of decoding failure (message can be repeated)	probability does not make sense
satellites, phones, space missions, trains	adversaries (Byzantine attacks), storage
block codes with the Hamming metric	
not capacity-achieving	capacity-achieving
for networks: case-by-case theory	rank-metric codes

Definition

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(M) \mid M \in \mathscr{C}, \ M \neq 0\}.$$

Codes as math objects \leadsto connections to other areas of mathematics:

- rank-metric codes and association schemes
- rank-metric codes and q-designs (also called subspace designs)
- rank-metric codes and lattices
- rank-metric codes and semifields
- rank-metric codes and q-rook polynomials
- rank-metric codes and q-polymatroids

(In the sequel, we assume $m \ge n$ w.l.o.g.)

Outline

Network coding

2 Rank-metric codes and topics in combinatorics

Notion of duality in $\mathbb{F}_q^{n \times m}$: the **trace-product** of $M, N \in \mathbb{F}_q^{n \times m}$ is $\langle M, N \rangle := \text{Tr}(MN^\top)$.

Definition

The **dual** of a rank-metric code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ is

$$\mathscr{C}^{\perp} := \{ N \in \mathbb{F}_q^{n \times m} \mid \langle M, N \rangle = 0 \text{ for all } M \in \mathscr{C} \}.$$

12 / 25

Notion of duality in $\mathbb{F}_q^{n \times m}$: the **trace-product** of $M, N \in \mathbb{F}_q^{n \times m}$ is $\langle M, N \rangle := \text{Tr}(MN^\top)$.

Definition

The **dual** of a rank-metric code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ is

$$\mathscr{C}^{\perp} := \{ N \in \mathbb{F}_q^{n \times m} \mid \langle M, N \rangle = 0 \text{ for all } M \in \mathscr{C} \}.$$

We count the number of rank *i* matrices in a rank-metric code:

$$W_i(\mathscr{C}) := |\{M \in \mathscr{C} \mid \mathsf{rk}(M) = i\}|$$
 (rank enumerator)

12 / 25

Notion of duality in $\mathbb{F}_q^{n \times m}$: the **trace-product** of $M, N \in \mathbb{F}_q^{n \times m}$ is $\langle M, N \rangle := \text{Tr}(MN^\top)$.

Definition

The **dual** of a rank-metric code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ is

$$\mathscr{C}^{\perp} := \{ N \in \mathbb{F}_q^{n \times m} \mid \langle M, N \rangle = 0 \text{ for all } M \in \mathscr{C} \}.$$

We count the number of rank *i* matrices in a rank-metric code:

$$W_i(\mathscr{C}) := |\{M \in \mathscr{C} \mid \mathsf{rk}(M) = i\}|$$
 (rank enumerator)

Theorem (Delsarte)

Let $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$, and let $0 \leq j \leq n$. we have

$$W_j(\mathscr{C}^{\perp}) = \frac{1}{|\mathscr{C}|} \sum_{i=0}^n W_i(\mathscr{C}) \sum_{s=0}^n (-1)^{j-s} q^{ms+\binom{j-s}{2}} \begin{bmatrix} n-i \\ s \end{bmatrix}_q \begin{bmatrix} n-s \\ j-s \end{bmatrix}_q.$$

Original proof by Delsarte uses association schemes and recurrence relations.

4 D > 4 D > 4 E > 4 E > E 990

For a code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ and a subspace $U \leq \mathbb{F}_q^n$, let

$$f_{\mathscr{C}}(U) := |\{M \in \mathscr{C} \mid \text{col-space}(M) = U\}|$$
 $g_{\mathscr{C}}(U) := \sum_{V \leq U} f_{\mathscr{C}}(V) = |\{M \in \mathscr{C} \mid \text{col-space}(M) \subseteq U\}|$

For a code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ and a subspace $U \leq \mathbb{F}_q^n$, let

$$f_{\mathscr{C}}(U) := |\{M \in \mathscr{C} \mid \text{col-space}(M) = U\}|$$
 $g_{\mathscr{C}}(U) := \sum_{V < U} f_{\mathscr{C}}(V) = |\{M \in \mathscr{C} \mid \text{col-space}(M) \subseteq U\}|$

Note that:

$$W_j(\mathscr{C}^{\perp}) = \sum_{\substack{U \leq \mathbb{F}_q^n \ \operatorname{dim}(U) = j}} f_{\mathscr{C}^{\perp}}(U) =$$

Dec. 2019 13 / 25

For a code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ and a subspace $U \leq \mathbb{F}_q^n$, let

$$f_{\mathscr{C}}(U) := |\{M \in \mathscr{C} \mid \text{col-space}(M) = U\}|$$
 $g_{\mathscr{C}}(U) := \sum_{V < U} f_{\mathscr{C}}(V) = |\{M \in \mathscr{C} \mid \text{col-space}(M) \subseteq U\}|$

Note that:

$$W_j(\mathscr{C}^\perp) = \sum_{\substack{U \leq \mathbb{F}_q^n \\ \dim(U) = j}} rac{\mathbf{f}_{\mathscr{C}^\perp}(U)}{\dim(U) = j} = \sum_{\substack{U \leq \mathbb{F}_q^n \\ \dim(U) = j}}$$

For a code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ and a subspace $U \leq \mathbb{F}_q^n$, let

$$f_{\mathscr{C}}(U) := |\{M \in \mathscr{C} \mid \text{col-space}(M) = U\}|$$

 $g_{\mathscr{C}}(U) := \sum_{V < U} f_{\mathscr{C}}(V) = |\{M \in \mathscr{C} \mid \text{col-space}(M) \subseteq U\}|$

Note that:

$$W_j(\mathscr{C}^{\perp}) = \sum_{\substack{U \leq \mathbb{F}_q^n \ \operatorname{dim}(U) = j}} rac{\mathsf{f}_{\mathscr{C}^{\perp}}(U)}{\operatorname{dim}(U) = j} = \sum_{\substack{U \leq \mathbb{F}_q^n \ \operatorname{dim}(U) = j}} \sum_{V \leq U} g_{\mathscr{C}^{\perp}}(V) \mu(V, U),$$

where μ is the Moebius function of the lattice of subspaces of \mathbb{F}_q^n .

For a code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ and a subspace $U \leq \mathbb{F}_q^n$, let

$$f_{\mathscr{C}}(U) := |\{M \in \mathscr{C} \mid \text{col-space}(M) = U\}|$$

 $g_{\mathscr{C}}(U) := \sum_{V < U} f_{\mathscr{C}}(V) = |\{M \in \mathscr{C} \mid \text{col-space}(M) \subseteq U\}|$

Note that:

$$W_j(\mathscr{C}^{\perp}) = \sum_{\substack{U \leq \mathbb{F}_q^n \ \operatorname{dim}(U) = j}} f_{\mathscr{C}^{\perp}}(U) = \sum_{\substack{U \leq \mathbb{F}_q^n \ \operatorname{dim}(U) = j}} \sum_{\substack{V \leq U \ q}} g_{\mathscr{C}^{\perp}}(V) \mu(V, U),$$

where μ is the Mæbius function of the lattice of subspaces of \mathbb{F}_q^n .

Proposition (R.)

$$g_{\mathscr{C}^{\perp}}(V) \; = \; rac{q^{m \cdot \dim(V)}}{|\mathscr{C}|} \; g_{\mathscr{C}}(V^{\perp}),$$

where V^{\perp} is the orthogonal of $V \leq \mathbb{F}_q^n$ w. r. to the standard inner product of \mathbb{F}_q^n .

4 D > 4 B > 4 E > 4 E > E 990

$$W_j(\mathscr{C}^\perp) = rac{1}{|\mathscr{C}|} \sum_{i=0}^j (-1)^{j-i} q^{mi+\binom{j-i}{2}} \sum_{\substack{U \leq \mathbb{F}_q^n \ \dim(U)=j}} \sum_{\substack{V \leq U \ \dim(V)=i}} g_\mathscr{C}(V^\perp)$$

$$\begin{array}{lcl} W_j(\mathscr{C}^\perp) & = & \frac{1}{|\mathscr{C}|} \sum_{i=0}^j (-1)^{j-i} q^{mi+\binom{j-i}{2}} \sum_{\substack{U \leq \mathbb{F}_q^n \\ \dim(U)=j}} \sum_{\substack{V \leq U \\ \dim(V)=i}} g_\mathscr{C}(V^\perp) \end{array}$$

Theorem (Delsarte)

$$W_{j}(\mathscr{C}^{\perp}) = \frac{1}{|\mathscr{C}|} \sum_{i=0}^{n} W_{i}(\mathscr{C}) \sum_{s=0}^{n} (-1)^{j-s} q^{ms+\binom{j-s}{2}} \begin{bmatrix} n-i \\ s \end{bmatrix}_{q} \begin{bmatrix} n-s \\ j-s \end{bmatrix}_{q}$$

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Why a new proof?

E.g., the technique can be "exported" to other contexts (pivot enumerators).

But before looking at other types of MacWilliams identities...

Why a new proof?

E.g., the technique can be "exported" to other contexts (pivot enumerators).

But before looking at other types of MacWilliams identities...

Examples of problems

Compute the number of rank r matrices $M \in \mathbb{F}_q^{n \times m}$ such that:

- their entries sum to zero, or
- a certain set of diagonal entries are zero $(M_{ii}=0 \text{ for all } i \in I \subseteq \{1,...,n\})$, or
- ...

Theorem (R.)

Let $\emptyset \neq I \subseteq \{1,...,n\}$. The number of rank r matrices $M \in \mathbb{F}_q^{n \times m}$ with $M_{ii} = 0$ for all $i \in I$ is given by the formula

$$v_r(I) := q^{-|I|} \sum_{i=0}^{|I|} \binom{|I|}{i} (q-1)^i \sum_{s=0}^n (-1)^{r-s} q^{ms+\binom{r-s}{2}} \begin{bmatrix} n-s \\ n-r \end{bmatrix}_q \begin{bmatrix} n-i \\ s \end{bmatrix}_q.$$

16 / 25

Theorem (R.)

Let $\emptyset \neq I \subseteq \{1,...,n\}$. The number of rank r matrices $M \in \mathbb{F}_n^{n \times m}$ with $M_{ii} = 0$ for all $i \in I$ is given by the formula

$$v_r(I) := q^{-|I|} \sum_{i=0}^{|I|} \binom{|I|}{i} (q-1)^i \sum_{s=0}^n (-1)^{r-s} q^{ms+\binom{r-s}{2}} \begin{bmatrix} n-s \\ n-r \end{bmatrix}_q \begin{bmatrix} n-i \\ s \end{bmatrix}_q.$$

Let $\mathscr{C}[I]$ be the space of matrices supported on $\{(i,i) \mid i \in I\}$.

Then $\mathscr{C}[I] \leq \mathbb{F}_{q}^{n \times m}$ is a linear rank-metric code, and

$$v_r(I) = W_r(\mathscr{C}[I]^{\perp})$$

Theorem (R.)

Let $\emptyset \neq I \subseteq \{1,...,n\}$. The number of rank r matrices $M \in \mathbb{F}_q^{n \times m}$ with $M_{ii} = 0$ for all $i \in I$ is given by the formula

$$v_r(I) := q^{-|I|} \sum_{i=0}^{|I|} {|I| \choose i} (q-1)^i \sum_{s=0}^n (-1)^{r-s} q^{ms+\binom{r-s}{2}} \begin{bmatrix} n-s \\ n-r \end{bmatrix}_q \begin{bmatrix} n-i \\ s \end{bmatrix}_q.$$

Let $\mathscr{C}[I]$ be the space of matrices supported on $\{(i,i) \mid i \in I\}$.

Then $\mathscr{C}[I] \leq \mathbb{F}_q^{n \times m}$ is a linear rank-metric code, and

$$v_r(I) = W_r(\mathscr{C}[I]^{\perp}) = \frac{1}{|\mathscr{C}[I]|} \sum_{i=0}^n W_i(\mathscr{C}[I]) \sum_{s=0}^n (-1)^{j-s} q^{ms + \binom{j-s}{2}} \begin{bmatrix} n-i \\ s \end{bmatrix}_q \begin{bmatrix} n-s \\ j-s \end{bmatrix}_q.$$

Theorem (R.)

Let $\emptyset \neq I \subseteq \{1,...,n\}$. The number of rank r matrices $M \in \mathbb{F}_q^{n \times m}$ with $M_{ii} = 0$ for all $i \in I$ is given by the formula

$$v_r(I) := q^{-|I|} \sum_{i=0}^{|I|} {|I| \choose i} (q-1)^i \sum_{s=0}^n (-1)^{r-s} q^{ms+\binom{r-s}{2}} \begin{bmatrix} n-s \\ n-r \end{bmatrix}_q \begin{bmatrix} n-i \\ s \end{bmatrix}_q.$$

Let $\mathscr{C}[I]$ be the space of matrices supported on $\{(i,i) \mid i \in I\}$.

Then $\mathscr{C}[I] \leq \mathbb{F}_q^{n \times m}$ is a linear rank-metric code, and

$$v_r(I) = W_r(\mathscr{C}[I]^{\perp}) = \frac{1}{|\mathscr{C}[I]|} \sum_{i=0}^n W_i(\mathscr{C}[I]) \sum_{s=0}^n (-1)^{j-s} q^{ms + \binom{j-s}{2}} \begin{bmatrix} n-i \\ s \end{bmatrix}_q \begin{bmatrix} n-s \\ j-s \end{bmatrix}_q.$$

Now,
$$|\mathscr{C}[I]| = q^{|I|}$$
 and $W_i(\mathscr{C}[I]) = \binom{|I|}{i} (q-1)^i$ for all i .

Theorem (R.)

Let $\emptyset \neq I \subseteq \{1,...,n\}$. The number of rank r matrices $M \in \mathbb{F}_q^{n \times m}$ with $M_{ii} = 0$ for all $i \in I$ is given by the formula

$$v_r(I) := q^{-|I|} \sum_{i=0}^{|I|} {|I| \choose i} (q-1)^i \sum_{s=0}^n (-1)^{r-s} q^{ms+\binom{r-s}{2}} \begin{bmatrix} n-s \\ n-r \end{bmatrix}_q \begin{bmatrix} n-i \\ s \end{bmatrix}_q.$$

Let $\mathscr{C}[I]$ be the space of matrices supported on $\{(i,i) \mid i \in I\}$.

Then $\mathscr{C}[I] \leq \mathbb{F}_q^{n \times m}$ is a linear rank-metric code, and

$$v_r(I) = W_r(\mathscr{C}[I]^{\perp}) = \frac{1}{|\mathscr{C}[I]|} \sum_{i=0}^{n} W_i(\mathscr{C}[I]) \sum_{s=0}^{n} (-1)^{j-s} q^{ms + \binom{j-s}{2}} \begin{bmatrix} n-i \\ s \end{bmatrix}_q \begin{bmatrix} n-s \\ j-s \end{bmatrix}_q.$$

Now,
$$|\mathscr{C}[I]| = q^{|I|}$$
 and $W_i(\mathscr{C}[I]) = \binom{|I|}{i} (q-1)^i$ for all i .

The argument was further extended by Lewis and Morales (2017).

MacWilliams-type identities

MacWilliams-type identities have been extensively studied in the coding theory literature in various contexts:

- additive codes in finite abelian groups (discrete Fourier analysis),
- association schemes (Bose-Mesner algebras),
- regular lattices (support maps),
- posets (metric spaces from orders),
- ...

MacWilliams-type identities

MacWilliams-type identities have been extensively studied in the coding theory literature in various contexts:

- additive codes in finite abelian groups (discrete Fourier analysis),
- association schemes (Bose-Mesner algebras),
- regular lattices (support maps),
- posets (metric spaces from orders),
- ...

Ingredients:

- a structured ambient space A
- a dual ambient space \widehat{A}
- ullet a notion of duality: $\mathscr{C} \subseteq A$ yields $\mathscr{C}^{\perp} \subseteq \widehat{A}$
- ullet counting devices on A and \widehat{A} (e.g., the rank enumerator)

For us, $A=\widehat{A}=\mathbb{F}_q^{n\times m}$. Duality is again trace-duality: $\mathscr{C}\leq \mathbb{F}_q^{n\times m}$ yields $\mathscr{C}^\perp\leq \mathbb{F}_q^{n\times m}$.

We partition the elements of $\mathbb{F}_q^{n\times m}$ according to the pivot indices in their reduced row-echelon form. This defines a partition $\mathscr{P}^{\mathsf{piv}}$ on $\mathbb{F}_q^{n\times m}$. Note:

$$|\mathscr{P}^{\mathsf{piv}}| = \sum_{r=0}^{n} \binom{m}{r}.$$

For us, $A = \widehat{A} = \mathbb{F}_q^{n \times m}$. Duality is again trace-duality: $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ yields $\mathscr{C}^\perp \leq \mathbb{F}_q^{n \times m}$.

We partition the elements of $\mathbb{F}_q^{n\times m}$ according to the pivot indices in their reduced row-echelon form. This defines a partition $\mathscr{P}^{\mathsf{piv}}$ on $\mathbb{F}_q^{n\times m}$. Note:

$$|\mathscr{P}^{\mathsf{piv}}| = \sum_{r=0}^{n} \binom{m}{r}.$$

Example:

For us, $A = \widehat{A} = \mathbb{F}_q^{n \times m}$. Duality is again trace-duality: $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ yields $\mathscr{C}^\perp \leq \mathbb{F}_q^{n \times m}$.

We partition the elements of $\mathbb{F}_q^{n\times m}$ according to the pivot indices in their reduced row-echelon form. This defines a partition \mathscr{P}^{piv} on $\mathbb{F}_q^{n\times m}$.

$$|\mathscr{P}^{\mathsf{piv}}| = \sum_{r=0}^{n} \binom{m}{r}.$$

Example:

Notation

$$\Pi = \{(j_1, ..., j_r) \mid 1 \le r \le n, \quad 1 \le j_1 < j_2 < \cdots < j_r \le m\} \cup \{()\}. \text{ Then } \mathscr{P}^{\mathsf{piv}} = (P_{\lambda})_{\lambda \in \Pi}.$$

For a code $\mathscr{C} \leq \mathbb{F}_a^{n \times m}$ and $\lambda \in \Pi$, $\mathscr{P}^{\mathsf{piv}}(\mathscr{C}, \lambda) := |\mathscr{C} \cap P_{\lambda}|$.

A MacWilliams identities for the pivot enumerator? Not exactly...

A MacWilliams identities for the pivot enumerator? Not exactly...

 $\mathscr{P}^{\mathsf{rpiv}}$ partitions the elements of $\mathbb{F}_q^{n \times m}$ according to the pivot indices in their reduced row-echelon form **computed from the right**.

$$\mathscr{P}^{\mathsf{rpiv}} = (Q_{\mu})_{\mu \in \Pi}, \qquad \qquad \mathscr{P}^{\mathsf{rpiv}}(\mathscr{C}, \mu) := |\mathscr{C} \cap Q_{\mu}|.$$

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$, and let $\lambda, \mu \in \Pi$. We have

$$\mathscr{P}^{\mathsf{rpiv}}(\mathscr{C}^{\perp},\mu) = \ \frac{1}{|\mathscr{C}|} \ \sum_{\pmb{\lambda} \in \Pi} \mathsf{K}(\pmb{\lambda},\mu) \cdot \mathscr{P}^{\mathsf{piv}}(\mathscr{C},\pmb{\lambda})$$

for suitable integers $K(\lambda, \mu)$. Moreover

$$(K(\lambda,\mu))_{\lambda,\mu}$$

is an invertible square matrix.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ ◆○○○

A MacWilliams identities for the pivot enumerator? Not exactly...

 $\mathscr{P}^{\mathsf{rpiv}}$ partitions the elements of $\mathbb{F}_q^{n \times m}$ according to the pivot indices in their reduced row-echelon form **computed from the right**.

$$\mathscr{P}^{\mathsf{rpiv}} = (Q_{\mu})_{\mu \in \Pi}, \qquad \qquad \mathscr{P}^{\mathsf{rpiv}}(\mathscr{C}, \mu) := |\mathscr{C} \cap Q_{\mu}|.$$

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$, and let $\lambda, \mu \in \Pi$. We have

$$\mathscr{P}^{\mathsf{rpiv}}(\mathscr{C}^{\perp},\mu) = \ \frac{1}{|\mathscr{C}|} \ \sum_{\pmb{\lambda} \in \Pi} \mathsf{K}(\pmb{\lambda},\mu) \cdot \mathscr{P}^{\mathsf{piv}}(\mathscr{C},\pmb{\lambda})$$

for suitable integers $K(\lambda, \mu)$. Moreover

$$(K(\lambda,\mu))_{\lambda,\mu}$$

is an invertible square matrix.

Computing $K(\lambda, \mu)$...

Definition

A **Ferrers diagram** is a subset $\mathscr{F} \subseteq [n] \times [m]$ that satisfies the following:

- if $(i,j) \in \mathscr{F}$ and j < m, then $(i,j+1) \in \mathscr{F}$ (right aligned),
- ② if $(i,j) \in \mathscr{F}$ and i > 1, then $(i-1,j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F} = [c_1, \ldots, c_m]$.

E.g.

$$\mathscr{F} = \qquad \qquad = [1,3,3,4]$$

Definition

A **Ferrers diagram** is a subset $\mathscr{F} \subseteq [n] \times [m]$ that satisfies the following:

- if $(i,j) \in \mathscr{F}$ and j < m, then $(i,j+1) \in \mathscr{F}$ (right aligned),
- $oldsymbol{0}$ if $(i,j) \in \mathscr{F}$ and i > 1, then $(i-1,j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F} = [c_1, \ldots, c_m]$.

E.g.

We denote by $\mathbb{F}_q[\mathscr{F}]$ the space of matrices supported on \mathscr{F} , and let

$$P_r(\mathscr{F};q) := \{ M \in \mathbb{F}_q[\mathscr{F}] \mid \mathsf{rk}(M) = r \}.$$

Definition

A **Ferrers diagram** is a subset $\mathscr{F} \subseteq [n] \times [m]$ that satisfies the following:

- if $(i,j) \in \mathscr{F}$ and j < m, then $(i,j+1) \in \mathscr{F}$ (right aligned),
- ② if $(i,j) \in \mathscr{F}$ and i > 1, then $(i-1,j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F} = [c_1, \ldots, c_m]$.

E.g.

$$\mathscr{F} = \begin{array}{cccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} = \begin{bmatrix} 1,3,3,4 \end{bmatrix}$$

We denote by $\mathbb{F}_q[\mathscr{F}]$ the space of matrices supported on \mathscr{F} , and let

$$P_r(\mathscr{F};q) := \{M \in \mathbb{F}_q[\mathscr{F}] \mid \mathsf{rk}(M) = r\}.$$

We can express $K(\lambda,\mu)$ in terms of $P_r(\mathscr{F};q)$, for certain r and for a suitable diagram \mathscr{F} .

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$\sigma = [m] \setminus \mu, \qquad \lambda \cap \sigma = (\lambda_{\alpha_1}, \dots, \lambda_{\alpha_x}), \qquad \mu \setminus \lambda = (\mu_{\beta_1}, \dots, \mu_{\beta_v}).$$

Furthermore, set

$$z_j = |\{i \in [x] \mid \lambda_{\alpha_i} < \mu_{\beta_j}\}| \quad \text{for } j \in [y], \qquad \quad \mathscr{F} = [z_1, \dots, z_y].$$

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$\sigma = [m] \setminus \mu, \qquad \lambda \cap \sigma = (\lambda_{\alpha_1}, \dots, \lambda_{\alpha_x}), \qquad \mu \setminus \lambda = (\mu_{\beta_1}, \dots, \mu_{\beta_v}).$$

Furthermore, set

$$z_j = |\{i \in [x] \mid \lambda_{\alpha_i} < \mu_{\beta_j}\}| \quad \text{for } j \in [y], \qquad \quad \mathscr{F} = [z_1, \dots, z_y].$$

Then

$$K(\lambda,\mu) = \sum_{t=0}^{m} (-1)^{|\lambda|-t} q^{nt+\binom{|\lambda|-t}{2}} \sum_{r=0}^{|\lambda\cap\sigma|} P_r(\mathscr{F};q) \begin{bmatrix} |\lambda\cap\sigma|-r \\ t \end{bmatrix}_q.$$

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$\sigma = [m] \setminus \mu, \qquad \lambda \cap \sigma = (\lambda_{\alpha_1}, \dots, \lambda_{\alpha_x}), \qquad \mu \setminus \lambda = (\mu_{\beta_1}, \dots, \mu_{\beta_v}).$$

Furthermore, set

$$z_j = |\{i \in [x] \mid \lambda_{\alpha_i} < \mu_{\beta_j}\}| \quad \text{for } j \in [y], \qquad \quad \mathscr{F} = [z_1, \dots, z_y].$$

Then

$$K(\lambda,\mu) = \sum_{t=0}^{m} (-1)^{|\lambda|-t} q^{nt+\binom{|\lambda|-t}{2}} \sum_{r=0}^{|\lambda\cap\sigma|} P_r(\mathscr{F};q) \begin{bmatrix} |\lambda\cap\sigma|-r \\ t \end{bmatrix}_q.$$

 $P_r(\mathscr{F};q) \rightarrow \text{rook theory}$

《□ → 《□ → 《 = → 《 = → ○ Q ○

Definition

The *q*-rook polynomial associated with \mathscr{F} and $r \geq 0$ is

$$R_r(\mathscr{F}) = \sum_{C \in \mathsf{NAR}_r(\mathscr{F})} q^{\mathsf{inv}(C,\mathscr{F})} \in \mathbb{Z}[q],$$

where:

- NAR_r(\mathscr{F}) is the set of all placements of r non-attacking rooks on \mathscr{F} (non-attacking means that no two rooks are in the same column, and no two are in the same row)
- $\operatorname{inv}(C, \mathscr{F}) \in \mathbb{N}$ is computed as shown on the board

Definition

The *q*-rook polynomial associated with \mathscr{F} and $r \geq 0$ is

$$R_r(\mathscr{F}) = \sum_{C \in \mathsf{NAR}_r(\mathscr{F})} q^{\mathsf{inv}(C,\mathscr{F})} \in \mathbb{Z}[q],$$

where:

- NAR_r(\mathscr{F}) is the set of all placements of r non-attacking rooks on \mathscr{F} (non-attacking means that no two rooks are in the same column, and no two are in the same row)
- $inv(C, \mathscr{F}) \in \mathbb{N}$ is computed as shown on the board

Theorem (Haglund)

For any Ferrers diagram \mathscr{F} and any $r \geq 0$ we have

$$P_r(\mathscr{F};q) = (q-1)^r q^{|\mathscr{F}|-r} R_r(\mathscr{F};q)_{|q^{-1}}$$

in the ring $\mathbb{Z}[q,q^{-1}]$.

Natural task: find an explicit expression for $R_r(\mathscr{F};q)$.

An explicit formula for $R_r(\mathscr{F})$:

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{F} = [c_1, \dots, c_m]$ be an $n \times m$ -Ferrers diagram. For $k \in [m]$ define $a_k = c_k - k + 1$.

For $j \in [m]$ let $\sigma_j \in \mathbb{Q}[x_1, \dots, x_m]$ be the j^{th} elementary symmetric polynomial in m indeterminates $(\sigma_0 = 1, \dots, \sigma_m = x_1 \cdots x_m)$.

Then

$$R_r(\mathscr{F};q) = \frac{q^{\binom{r+1}{2}-rm+\text{area}(\mathscr{F})}(-1)^{m-r}}{(1-q)^r \prod_{k=1}^{m-r} (1-q^k)} \sum_{t=m-r}^m (-1)^t \sigma_{m-t}(q^{-a_1},\ldots,q^{-a_m}) \prod_{j=0}^{m-r-1} (1-q^{t-j}).$$

An explicit formula for $R_r(\mathscr{F})$:

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{F} = [c_1, \ldots, c_m]$ be an $n \times m$ -Ferrers diagram. For $k \in [m]$ define $a_k = c_k - k + 1$.

For $j \in [m]$ let $\sigma_j \in \mathbb{Q}[x_1, \dots, x_m]$ be the j^{th} elementary symmetric polynomial in m indeterminates $(\sigma_0 = 1, \dots, \sigma_m = x_1 \cdots x_m)$.

Then

$$R_r(\mathscr{F};q) = \frac{q^{\binom{r+1}{2}-rm+\operatorname{area}(\mathscr{F})}(-1)^{m-r}}{(1-q)^r \prod_{k=1}^{m-r} (1-q^k)} \sum_{t=m-r}^m (-1)^t \sigma_{m-t}(q^{-a_1},\ldots,q^{-a_m}) \prod_{j=0}^{m-r-1} (1-q^{t-j}).$$

Combining this with Haglund's theorem we find an explicit expression for $P_r(\mathscr{F};q)$.

Proof is technical.

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

A different approach: compute $P_r(\mathscr{F};q)$ directly. Notation: $\mathscr{F}=[c_1,...,c_m]$.

Theorem (Gluesing-Luerssen, R.)

$$P_r(\mathscr{F};q) = \sum_{1 \le i_1 < \dots < i_r \le m} q^{rm - \sum_{j=1}^r i_j} \prod_{j=1}^r (q^{c_{i_j} - j + 1} - 1).$$

Proof is short.

A different approach: compute $P_r(\mathscr{F};q)$ directly. Notation: $\mathscr{F}=[c_1,...,c_m]$.

Theorem (Gluesing-Luerssen, R.)

$$P_r(\mathscr{F};q) = \sum_{1 \le i_1 < \dots < i_r \le m} q^{rm - \sum_{j=1}^r i_j} \prod_{j=1}^r (q^{c_{i_j} - j + 1} - 1).$$

Proof is short.

But inverting Haglund's theorem we also find a simple explicit formula for $R_r(\mathscr{F};q)$!

Corollary (Gluesing-Luerssen, R.)

$$R_r(\mathscr{F};q) = \frac{q^{\sum_{j=1}^{m} c_j - rm} \sum_{1 \leq i_1 < \dots < i_r \leq m} \prod_{j=1}^{r} (q^{i_j + j - c_{i_j} - 1} - q^{i_j})}{(1 - q)^r}$$

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ りへで

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$S_{m+1,r} = q^{r-1}S_{m,r-1} + \frac{q^r - 1}{q - 1}S_{m,r}$$

with initial conditions $S_{0,0}(q) = 1$ and $S_{m,r}(q) = 0$ for r < 0 or r > m.

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$S_{m+1,r} = q^{r-1}S_{m,r-1} + \frac{q^r - 1}{q - 1}S_{m,r}$$

with initial conditions $S_{0,0}(q) = 1$ and $S_{m,r}(q) = 0$ for r < 0 or r > m.

Theorem (Garsia, Remmel)

$$S_{m+1,m+1-r}=R_r(\mathscr{F};q),$$

where $\mathscr{F} = [1,...,m]$ is the upper-triangular $m \times m$ Ferrers board.

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$S_{m+1,r} = q^{r-1} S_{m,r-1} + \frac{q^r - 1}{q - 1} S_{m,r}$$

with initial conditions $S_{0,0}(q) = 1$ and $S_{m,r}(q) = 0$ for r < 0 or r > m.

Theorem (Garsia, Remmel)

$$S_{m+1,m+1-r}=R_r(\mathscr{F};q),$$

where $\mathscr{F} = [1,...,m]$ is the upper-triangular $m \times m$ Ferrers board.

Theorem (Gluesing-Luerssen, R.)

$$S_{m+1,m+1-r} = \frac{q^{\binom{m+1}{2}-rm} \sum_{1 \leq i_1 < \dots < i_r \leq m} \prod_{j=1}^r (q^{j-1} - q^{i_j})}{(1-q)^r} \quad \text{for } 1 \leq r \leq m+1.$$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$S_{m+1,r} = q^{r-1} S_{m,r-1} + \frac{q^r - 1}{q - 1} S_{m,r}$$

with initial conditions $S_{0,0}(q) = 1$ and $S_{m,r}(q) = 0$ for r < 0 or r > m.

Theorem (Garsia, Remmel)

$$S_{m+1,m+1-r}=R_r(\mathscr{F};q),$$

where $\mathscr{F} = [1,...,m]$ is the upper-triangular $m \times m$ Ferrers board.

Theorem (Gluesing-Luerssen, R.)

$$S_{m+1,m+1-r} = \frac{q^{\binom{m+1}{2}-rm} \sum_{1 \leq i_1 < \dots < i_r \leq m} \prod_{j=1}^r (q^{j-1} - q^{i_j})}{(1-q)^r} \quad \text{for } 1 \leq r \leq m+1.$$

Thank you very much!