# On the sparsity of MRD codes 

Alberto Ravagnani

## WCC 2019

joint work with Eimear Byrne


European Commission

## Density of MDS codes

A $k$-dimensional block code $\mathscr{C} \leq \mathbb{F}_{q}^{n}$ is MDS if $d_{\mathrm{H}}(\mathscr{C})=n-k+1$.
A randomly chosen $k$-dimensional code is MDS with high probability, if $q \gg 0$.

## Density of MDS codes

A $k$-dimensional block code $\mathscr{C} \leq \mathbb{F}_{q}^{n}$ is MDS if $d_{\mathrm{H}}(\mathscr{C})=n-k+1$.
A randomly chosen $k$-dimensional code is MDS with high probability, if $q \gg 0$.
In other words...
Theorem (Folklore)
Let $n \geq k \geq 1$ be integers. We have

$$
\lim _{q \rightarrow+\infty} \frac{\# \text { of } k \text {-dim MDS codes in } \mathbb{F}_{q}^{n}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q}^{n}}=1
$$

## Density of MDS codes

A $k$-dimensional block code $\mathscr{C} \leq \mathbb{F}_{q}^{n}$ is MDS if $d_{\mathrm{H}}(\mathscr{C})=n-k+1$.
A randomly chosen $k$-dimensional code is MDS with high probability, if $q \gg 0$.
In other words...
Theorem (Folklore)
Let $n \geq k \geq 1$ be integers. We have

$$
\lim _{q \rightarrow+\infty} \frac{\# \text { of } k \text {-dim MDS codes in } \mathbb{F}_{q}^{n}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q}^{n}}=1
$$

We say that MDS codes are dense within the set of $k$-dimensional codes in $\mathbb{F}_{q}^{n}$.

## The notion of density

## Definition

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $\left(\mathscr{F}_{s} \mid s \in S\right)$ be a sequence of finite non-empty sets indexed by $S$, and let $\left(\mathscr{F}_{s}^{\prime} \mid s \in S\right)$ be a sequence of sets with $\mathscr{F}_{s}^{\prime} \subseteq \mathscr{F}_{s}$ for all $s \in S$.

The density function $S \rightarrow \mathbb{Q}$ of $\mathscr{F}_{s}^{\prime}$ in $\mathscr{F}_{s}$ is $s \mapsto\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right|$.

If

$$
\lim _{s \rightarrow+\infty}\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right|=\delta
$$

then $\mathscr{F}_{s}^{\prime}$ has density $\delta$ in $\mathscr{F}_{s}$.

- $\delta=1: \quad \mathscr{F}_{s}^{\prime}$ is dense in $\mathscr{F}_{s}$
- $\delta=0: \quad \mathscr{F}_{s}^{\prime}$ is sparse in $\mathscr{F}_{s}$


## The notion of density

## Definition

Let $S \subseteq \mathbb{N}$ be an infinite set. Let ( $\mathscr{F}_{s} \mid s \in S$ ) be a sequence of finite non-empty sets indexed by $S$, and let $\left(\mathscr{F}_{s}^{\prime} \mid s \in S\right.$ ) be a sequence of sets with $\mathscr{F}_{s}^{\prime} \subseteq \mathscr{F}_{s}$ for all $s \in S$.
The density function $S \rightarrow \mathbb{Q}$ of $\mathscr{F}_{s}^{\prime}$ in $\mathscr{F}_{s}$ is $s \mapsto\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right|$.

If

$$
\lim _{s \rightarrow+\infty}\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right|=\delta,
$$

then $\mathscr{F}_{s}^{\prime}$ has density $\delta$ in $\mathscr{F}_{s}$.

- $\delta=1: \mathscr{F}_{s}^{\prime}$ is dense in $\mathscr{F}_{s}$
- $\delta=0: \mathscr{F}_{s}^{\prime}$ is sparse in $\mathscr{F}_{s}$

EXAMPLE: $\quad S=\mathbb{N}_{\geq 1} \quad \mathscr{F}_{s}=\{n \in \mathbb{N} \mid 1 \leq n \leq s\} \quad \mathscr{F}_{s}^{\prime}=\{p \in \mathbb{N} \mid p \leq s, p$ prime $\}$.

Then:

$$
\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right| \rightarrow 0, \quad\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right| \sim 1 / \log (s)
$$

(Hadamard, de la Vallée-Poussin, 1896)

## The notion of density

## Definition

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $\left(\mathscr{F}_{s} \mid s \in S\right)$ be a sequence of finite non-empty sets indexed by $S$, and let $\left(\mathscr{F}_{s}^{\prime} \mid s \in S\right)$ be a sequence of sets with $\mathscr{F}_{s}^{\prime} \subseteq \mathscr{F}_{s}$ for all $s \in S$.

The density function $S \rightarrow \mathbb{Q}$ of $\mathscr{F}_{s}^{\prime}$ in $\mathscr{F}_{s}$ is $s \mapsto\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right|$.

If

$$
\lim _{s \rightarrow+\infty}\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right|=\delta
$$

then $\mathscr{F}_{s}^{\prime}$ has density $\delta$ in $\mathscr{F}_{s}$.

- $\delta=1: \quad \mathscr{F}_{s}^{\prime}$ is dense in $\mathscr{F}_{s}$
- $\delta=0: \quad \mathscr{F}_{s}^{\prime}$ is sparse in $\mathscr{F}_{s}$

EXAMPLE: $\quad S=\mathbb{N} \quad \mathscr{F}_{s}=\{n \in \mathbb{N} \mid n \leq s\} \quad \mathscr{F}_{s}^{\prime}=\{n \in \mathbb{N} \mid n$ is even $\}$.

Then:

$$
\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right| \rightarrow 1 / 2
$$

The even numbers have density $1 / 2$ within the natural numbers.

## The notion of density

## Definition

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $\left(\mathscr{F}_{s} \mid s \in S\right)$ be a sequence of finite non-empty sets indexed by $S$, and let $\left(\mathscr{F}_{s}^{\prime} \mid s \in S\right)$ be a sequence of sets with $\mathscr{F}_{s}^{\prime} \subseteq \mathscr{F}_{s}$ for all $s \in S$.

The density function $S \rightarrow \mathbb{Q}$ of $\mathscr{F}_{s}^{\prime}$ in $\mathscr{F}_{s}$ is $s \mapsto\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right|$.

If

$$
\lim _{s \rightarrow+\infty}\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right|=\delta
$$

then $\mathscr{F}_{s}^{\prime}$ has density $\delta$ in $\mathscr{F}_{s}$.

- $\delta=1: \quad \mathscr{F}_{s}^{\prime}$ is dense in $\mathscr{F}_{s}$
- $\delta=0: \quad \mathscr{F}_{s}^{\prime}$ is sparse in $\mathscr{F}_{s}$

EXAMPLE: $\quad S=\mathbb{N} \quad \mathscr{F}_{s}=\{n \in \mathbb{N} \mid n \leq s\} \quad \mathscr{F}_{s}^{\prime}=\{n \in \mathbb{N} \mid n$ is even $\}$.

Then:

$$
\left|\mathscr{F}_{s}^{\prime}\right| /\left|\mathscr{F}_{s}\right| \rightarrow 1 / 2
$$

The even numbers have density $1 / 2$ within the natural numbers.


## Density of MDS codes

## Density of MDS codes

## Remark

Let $G \in \mathbb{F}_{q}^{k \times n}$ is a rank $k$ matrix in reduced row-echelon form. TFAE:
(1) the rows of $G$ generate a $k$-dimensional MDS code;
(O) all the $k \times k$ minors of $G$ are non-zero (in particular, $\operatorname{piv}(G)=\{1, \ldots, k\}$ ).

## Density of MDS codes

## Remark

Let $G \in \mathbb{F}_{q}^{k \times n}$ is a rank $k$ matrix in reduced row-echelon form. TFAE:
(1) the rows of $G$ generate a $k$-dimensional MDS code;
(2) all the $k \times k$ minors of $G$ are non-zero (in particular, $\operatorname{piv}(G)=\{1, \ldots, k\}$ ).

Consider a matrix of the form $G=\left(I_{k} \mid Y\right)$, where $Y$ is a $k \times(n-k)$ matrix of independent variables $\left(z_{i} \mid 1 \leq i \leq N\right)$ and $N=k(n-k)$.

$$
\text { e.g. } \quad\left(\begin{array}{llllll}
1 & 0 & z_{1} & z_{2} & z_{3} & z_{4} \\
0 & 1 & z_{5} & z_{6} & z_{7} & z_{8}
\end{array}\right) \quad N=8
$$

## Density of MDS codes

## Remark

Let $G \in \mathbb{F}_{q}^{k \times n}$ is a rank $k$ matrix in reduced row-echelon form. TFAE:
(1) the rows of $G$ generate a $k$-dimensional MDS code;
(2) all the $k \times k$ minors of $G$ are non-zero (in particular, $\operatorname{piv}(G)=\{1, \ldots, k\}$ ).

Consider a matrix of the form $G=\left(I_{k} \mid Y\right)$, where $Y$ is a $k \times(n-k)$ matrix of independent variables $\left(z_{i} \mid 1 \leq i \leq N\right)$ and $N=k(n-k)$.

$$
\text { e.g. } \quad\left(\begin{array}{llllll}
1 & 0 & z_{1} & z_{2} & z_{3} & z_{4} \\
0 & 1 & z_{5} & z_{6} & z_{7} & z_{8}
\end{array}\right) \quad N=8
$$

Let $p_{1}, \ldots, p_{M} \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{N}\right]$ be the maximal minors of $G$, where $M=\binom{n}{k}$. The MDS codes correspond to the vectors $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ such that

$$
\left(p_{1} p_{2} \cdots p_{M}\right)\left(\alpha_{1}, \ldots, \alpha_{N}\right) \neq 0
$$

## Density of MDS codes

## Remark

Let $G \in \mathbb{F}_{q}^{k \times n}$ is a rank $k$ matrix in reduced row-echelon form. TFAE:
(1) the rows of $G$ generate a $k$-dimensional MDS code;
(2) all the $k \times k$ minors of $G$ are non-zero (in particular, $\operatorname{piv}(G)=\{1, \ldots, k\}$ ).

Consider a matrix of the form $G=\left(I_{k} \mid Y\right)$, where $Y$ is a $k \times(n-k)$ matrix of independent variables $\left(z_{i} \mid 1 \leq i \leq N\right)$ and $N=k(n-k)$.

$$
\text { e.g. } \quad\left(\begin{array}{llllll}
1 & 0 & z_{1} & z_{2} & z_{3} & z_{4} \\
0 & 1 & z_{5} & z_{6} & z_{7} & z_{8}
\end{array}\right) \quad N=8
$$

Let $p_{1}, \ldots, p_{M} \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{N}\right]$ be the maximal minors of $G$, where $M=\binom{n}{k}$. The MDS codes correspond to the vectors $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ such that

$$
\left(p_{1} p_{2} \cdots p_{M}\right)\left(\alpha_{1}, \ldots, \alpha_{N}\right) \neq 0
$$

## Claim

The $k$-dimensional MDS codes in $\mathbb{F}_{q}^{n}$ correspond to the non-zeros $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ of a polynomial $p:=p_{1} p_{2} \cdots p_{M} \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{N}\right]$.

## Density of MDS codes

## Claim

The $k$-dimensional MDS codes in $\mathbb{F}_{q}^{n}$ correspond to the non-zeros $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ of a polynomial $p:=p_{1} p_{2} \cdots p_{M} \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{N}\right]$.

Note: $\operatorname{deg}(p) \leq k M=k\binom{n}{k}$

## Density of MDS codes

## Claim

The $k$-dimensional MDS codes in $\mathbb{F}_{q}^{n}$ correspond to the non-zeros $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ of a polynomial $p:=p_{1} p_{2} \cdots p_{M} \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{N}\right]$.

Note: $\operatorname{deg}(p) \leq k M=k\binom{n}{k}$
Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$
q^{N}\left(1-q^{-1} k M\right)=q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)
$$

## Density of MDS codes

## Claim

The $k$-dimensional MDS codes in $\mathbb{F}_{q}^{n}$ correspond to the non-zeros $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ of a polynomial $p:=p_{1} p_{2} \cdots p_{M} \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{N}\right]$.

Note: $\operatorname{deg}(p) \leq k M=k\binom{n}{k}$
Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$
q^{N}\left(1-q^{-1} k M\right)=q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)
$$

and therefore

$$
\frac{\# \text { of } k \text {-dim MDS codes in } \mathbb{F}_{q}^{n}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q}^{n}} \geq \frac{q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)}{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}}
$$

## Density of MDS codes

## Claim

The $k$-dimensional MDS codes in $\mathbb{F}_{q}^{n}$ correspond to the non-zeros $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ of a polynomial $p:=p_{1} p_{2} \cdots p_{M} \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{N}\right]$.

Note: $\operatorname{deg}(p) \leq k M=k\binom{n}{k}$
Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$
q^{N}\left(1-q^{-1} k M\right)=q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)
$$

and therefore

$$
\lim _{q \rightarrow+\infty} \frac{\text { \# of } k \text {-dim MDS codes in } \mathbb{F}_{q}^{n}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q}^{n}} \geq \lim _{q \rightarrow+\infty} \frac{q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)}{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}}
$$

## Density of MDS codes

## Claim

The $k$-dimensional MDS codes in $\mathbb{F}_{q}^{n}$ correspond to the non-zeros $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ of a polynomial $p:=p_{1} p_{2} \cdots p_{M} \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{N}\right]$.

Note: $\operatorname{deg}(p) \leq k M=k\binom{n}{k}$
Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$
q^{N}\left(1-q^{-1} k M\right)=q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)
$$

and therefore

$$
\lim _{q \rightarrow+\infty} \frac{\# \text { of } k \text {-dim MDS codes in } \mathbb{F}_{q}^{n}}{\# \text { of } k-\operatorname{dim} \operatorname{codes} \text { in } \mathbb{F}_{q}^{n}} \geq \lim _{q \rightarrow+\infty} \frac{q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)}{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}}=1
$$

## Density problems in Coding Theory

## Theorem (Folklore)

Let $n \geq k \geq 1$ be integers. We have

$$
\lim _{q \rightarrow+\infty} \frac{\# \text { of } k \text {-dim MDS codes in } \mathbb{F}_{q}^{n}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q}^{n}}=1
$$

In words: MDS codes are "dense" within the set of $k$-dimensional codes in $\mathbb{F}_{q}^{n}$.

## Density problems in Coding Theory

## Theorem (Folklore)

Let $n \geq k \geq 1$ be integers. We have

$$
\lim _{q \rightarrow+\infty} \frac{\# \text { of } k \text {-dim MDS codes in } \mathbb{F}_{q}^{n}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q}^{n}}=1
$$

In words: MDS codes are "dense" within the set of $k$-dimensional codes in $\mathbb{F}_{q}^{n}$.

We study "density questions" in coding theory in:
E. Byrne, A. Ravagnani

Partition-Balanced Families of Codes and Asymptotic Enumeration in Coding Theory arXiv 1805.02049

## Density problems in coding theory

We study density problems in general:

- Ambient space: Hamming space, vector rk-metric space, matrix rk-metric space
- Various properties related to: minimum distance, covering radius, maximality


## Density problems in coding theory

We study density problems in general:

- Ambient space: Hamming space, vector rk-metric space, matrix rk-metric space
- Various properties related to: minimum distance, covering radius, maximality


## Idea

Look at families of codes that exhibit regularity properties with respect to partitions of the ambient space $X \in\left\{\mathbb{F}_{q}^{n}, \mathbb{F}_{q^{m}}^{n}, \mathbb{F}_{q}^{n \times m}\right\}$.

## Definition

Let $\mathscr{P}=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\}$ be a partition of $X$. A family $\mathscr{F}$ of codes in $X$ is $\mathscr{P}$-balanced if for all $x \in X$ the number

$$
|\{\mathscr{C} \in \mathscr{F} \mid x \in \mathscr{C}\}|
$$

only depends to the class of $x$ with respect to the partition $\mathscr{P}$.

## Density problems in coding theory

We study density problems in general:

- Ambient space: Hamming space, vector rk-metric space, matrix rk-metric space
- Various properties related to: minimum distance, covering radius, maximality


## Idea

Look at families of codes that exhibit regularity properties with respect to partitions of the ambient space $X \in\left\{\mathbb{F}_{q}^{n}, \mathbb{F}_{q^{m}}^{n}, \mathbb{F}_{q}^{n \times m}\right\}$.

## Definition

Let $\mathscr{P}=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\}$ be a partition of $X$. A family $\mathscr{F}$ of codes in $X$ is $\mathscr{P}$-balanced if for all $x \in X$ the number

$$
|\{\mathscr{C} \in \mathscr{F} \mid x \in \mathscr{C}\}|
$$

only depends to the class of $x$ with respect to the partition $\mathscr{P}$.
We use $\mathscr{P}$-balanced families to estimate the number of codes with a certain properties.

## What is the density of optimal/non-optimal codes?

## Hamming space

- $X=\mathbb{F}_{q}^{n}, \quad d_{\mathrm{H}}(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|$
- Code: $\mathbb{F}_{q}$-subspace $\mathscr{C} \leq \mathbb{F}_{q}^{n}$
- Bound: a code $\mathscr{C} \leq \mathbb{F}_{q}^{n}$ has $\operatorname{dim}(\mathscr{C}) \leq n-d_{\mathrm{H}}(\mathscr{C})+1$
- Codes meeting the bound: MDS codes (optimal)


## Vector rank-metric space

- $X=\mathbb{F}_{q^{m}}^{n}$ with $m \geq n, \quad d_{\mathrm{rk}}(x, y)=\operatorname{dim}_{\mathbb{F}_{q}} \operatorname{span}\left\{x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right\}$
- Code: $\mathbb{F}_{q^{m-s u b s p a c e}} \mathscr{C} \leq \mathbb{F}_{q^{m}}^{n}$
- Bound: a code $\mathscr{C} \leq \mathbb{F}_{q^{m}}^{n}$ has $\operatorname{dim}_{\mathbb{F}_{q^{m}}}(\mathscr{C}) \leq n-d_{\mathrm{rk}}(\mathscr{C})+1$
- Codes meeting the bound: vector MRD codes (optimal)


## Matrix rank-metric space

- $X=\mathbb{F}_{q}^{n \times m}$ with $m \geq n, \quad d_{\mathrm{rk}}(x, y)=\mathrm{rk}(X-Y)$
- Code: $\mathbb{F}_{q}$-subspace $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$
- Bound: a code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ has $\operatorname{dim}(\mathscr{C}) \leq m\left(n-d_{\text {rk }}(\mathscr{C})+1\right)$
- Codes meeting the bound: matrix MRD codes (optimal)


## MRD vector rk-metric codes

Using the Schwartz-Zippel lemma:

## Theorem (Neri-Trautmann-Randrianarisoa-Rosenthal, 2017)

$\frac{\# \text { of } k \text {-dim MRD codes in } \mathbb{F}_{q^{m}}^{n}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q^{m}}^{n}} \geq q^{m k(n-k)}\left[\begin{array}{l}n \\ k\end{array}\right]_{q^{m}}^{-1}\left(1-\sum_{r=0}^{k}\left[\begin{array}{c}k \\ k-r\end{array}\right]_{q}\left[\begin{array}{c}n-k \\ r\end{array}\right]_{q} q^{r^{2}} q^{-m}\right)$

$$
\rightarrow 1 \text { as } m \rightarrow+\infty
$$

IDEA: MRD vector rk-metric codes are the non-zeros of a polynomial of bounded degree

## MRD vector rk-metric codes

Using the Schwartz-Zippel lemma:

## Theorem (Neri-Trautmann-Randrianarisoa-Rosenthal, 2017)

$$
\begin{aligned}
\frac{\# \text { of } k \text {-dim MRD codes in } \mathbb{F}_{q^{m}}^{n}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q^{m}}^{n}} & \geq q^{m k(n-k)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q^{m}}^{-1}\left(1-\sum_{r=0}^{k}\left[\begin{array}{c}
k \\
k-r
\end{array}\right]_{q}\left[\begin{array}{c}
n-k \\
r
\end{array}\right]_{q} q^{r^{2}} q^{-m}\right) \\
& \rightarrow 1 \text { as } m \rightarrow+\infty
\end{aligned}
$$

IDEA: MRD vector rk-metric codes are the non-zeros of a polynomial of bounded degree

We can improve this bound as follows:

## Theorem (Byrne-R.)

$\frac{\text { \# of } k \text {-dim MRD codes in } \mathbb{F}_{q^{m}}^{n}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q^{m}}^{n}} \geq 1-\frac{q^{m k}-1}{\left(q^{m}-1\right)\left(q^{m n}-1\right)}\left(-1+\sum_{i=0}^{d-1}\left[\begin{array}{l}n \\ i\end{array}\right]_{q} \prod_{j=0}^{i-1}\left(q^{m}-q^{j}\right)\right)$

## MRD matrix rk-metric codes

MRD matrix codes can be described as the non-zeros of a polynomial.

## MRD matrix rk-metric codes

MRD matrix codes can be described as the non-zeros of a polynomial.
However, MRD matrix codes are not dense!

## MRD matrix rk-metric codes

MRD matrix codes can be described as the non-zeros of a polynomial.

## However, MRD matrix codes are not dense!

## Theorem (Byrne-R.)

Let $m \geq n \geq 2$ and let $1 \leq k \leq m n-1$ be integers.

- If $m$ does not divide $k$, then there is no $k$-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If $m$ divides $k$, then

$$
\begin{aligned}
& \text { \# of } k \text {-dim non-MRD codes in } \mathbb{F}_{q}^{n \times m} \\
& \text { \# of } k \text {-dim codes in } \mathbb{F}_{q}^{n \times m} \geq \\
& \left.q\left[\begin{array}{c}
m n \\
k
\end{array}\right]^{-1}\left(\sum_{h=1}^{m(n-k)}\left[\begin{array}{c}
t \\
h
\end{array}\right] \sum_{s=h}^{m(n-k)}\left[\begin{array}{c}
m(n-k)-h \\
s-h
\end{array}\right]\left[\begin{array}{c}
m n-s \\
m n-k
\end{array}\right](-1)^{s-h} q^{(s-h} 2\right)\right) . \\
& \left(1-\frac{\left(q^{k}-1\right)\left(q^{m n-k}-1\right)}{2\left(q^{m n}-q^{m n-k}\right)}\right) .
\end{aligned}
$$

This quantity goes to $1 / 2$ as $q \rightarrow+\infty$ and to $1 / 2\left(q /(q-1)-(q-1)^{2}\right)$ as $m \rightarrow+\infty$.

## Non-density of MRD matrix codes

## Corollary (Byrne-R.)

Let $m \geq n \geq 2$ and let $1 \leq k \leq m n-1$ be integers.

- If $m$ does not divide $k$, then there is no $k$-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If $m$ divides $k$, then

$$
\limsup _{q \rightarrow+\infty} \liminf _{q \rightarrow+\infty} \frac{\# \text { of } k \text {-dim non-MRD codes in } \mathbb{F}_{q}^{n \times m}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q}^{n \times m}} \geq 1 / 2
$$

$\limsup _{m \rightarrow+\infty} \liminf _{m \rightarrow+\infty} \frac{\# \text { of } k \text {-dim non-MRD codes in } \mathbb{F}_{q}^{n \times m}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q}^{n \times m}} \geq \frac{1}{2}\left(\frac{q}{q-1}-(q-1)^{-2}\right) \geq \frac{1}{2}$.

Matrix MRD codes are NOT dense.

## Non-density of MRD matrix codes

## Corollary (Byrne-R.)

Let $m \geq n \geq 2$ and let $1 \leq k \leq m n-1$ be integers.

- If $m$ does not divide $k$, then there is no $k$-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If $m$ divides $k$, then

$$
\limsup _{q \rightarrow+\infty} \liminf _{q \rightarrow+\infty} \frac{\# \text { of } k \text {-dim non-MRD codes in } \mathbb{F}_{q}^{n \times m}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q}^{n \times m}} \geq 1 / 2
$$

$$
\limsup _{m \rightarrow+\infty} \liminf _{m \rightarrow+\infty} \frac{\# \text { of } k \text {-dim non-MRD codes in } \mathbb{F}_{q}^{n \times m}}{\# \text { of } k \text {-dim codes in } \mathbb{F}_{q}^{n \times m}} \geq \frac{1}{2}\left(\frac{q}{q-1}-(q-1)^{-2}\right) \geq \frac{1}{2}
$$

## Matrix MRD codes are NOT dense.

Non-density for $q \rightarrow+\infty$ was also shown by Antrobus/Gluesing-Luerssen with different methods.

## Other results

We can study:

- Density of codes that are optimal (MDS, MRD, MRD)
- Density of codes of bounded minimum distance
- Density of codes that meet the redundancy bound for their covering radius
- Density of matrix codes that meet the initial set bound for their covering radius
- Density of optimal codes within maximal codes (with respect to inclusion)
- Average parameters of codes (e.g., average weight distribution)
- ...


## Covering radius of rk-metric codes

## Theorem (Byrne, R.)

Let $k$ be an integer with $0 \leq k \leq n m$. Denote by $\mathscr{F}$ the family of rank metric codes in $\mathbb{F}_{q}^{n \times m}$ of dimension $k$. Define $\rho_{k}:=n-\lfloor k / m\rfloor$, and let $\mathscr{F}^{\prime}:=\left\{\mathscr{C} \in \mathscr{F} \mid \rho^{r k}(\mathscr{C})=\rho_{k}\right\}$.

Recall: $\quad \rho^{\mathrm{rk}}(\mathscr{C})=\min \left\{i \mid\right.$ for all $N \in \mathbb{F}_{q}^{n \times m}$ there exists $M \in \mathscr{C}$ with $\left.\operatorname{rk}(M, N) \leq i\right\}$.
We have

$$
\lim _{q \rightarrow \infty} \frac{\left|\mathscr{F}^{\prime}\right|}{|\mathscr{F}|}=1, \quad \text { provided that } k<(m-n+\lfloor k / m\rfloor+1)(\lfloor k / m\rfloor+1)
$$

## Covering radius of rk-metric codes

## Theorem (Byrne, R.)

Let $k$ be an integer with $0 \leq k \leq n m$. Denote by $\mathscr{F}$ the family of rank metric codes in $\mathbb{F}_{q}^{n \times m}$ of dimension $k$. Define $\rho_{k}:=n-\lfloor k / m\rfloor$, and let $\mathscr{F}^{\prime}:=\left\{\mathscr{C} \in \mathscr{F} \mid \rho^{\text {rk }}(\mathscr{C})=\rho_{k}\right\}$.

Recall: $\quad \rho^{\mathrm{rk}}(\mathscr{C})=\min \left\{i \mid\right.$ for all $N \in \mathbb{F}_{q}^{n \times m}$ there exists $M \in \mathscr{C}$ with $\left.\operatorname{rk}(M, N) \leq i\right\}$.
We have

$$
\lim _{q \rightarrow \infty} \frac{\left|\mathscr{F}^{\prime}\right|}{|\mathscr{F}|}=1, \quad \text { provided that } k<(m-n+\lfloor k / m\rfloor+1)(\lfloor k / m\rfloor+1)
$$

## Remark

Not all rk-metric codes have covering radius $n-\lfloor k / m\rfloor$.

## Covering radius of rk-metric codes

## Theorem (Byrne, R.)

Let $k$ be an integer with $0 \leq k \leq n m$. Denote by $\mathscr{F}$ the family of rank metric codes in $\mathbb{F}_{q}^{n \times m}$ of dimension $k$. Define $\rho_{k}:=n-\lfloor k / m\rfloor$, and let $\mathscr{F}^{\prime}:=\left\{\mathscr{C} \in \mathscr{F} \mid \rho^{\text {rk }}(\mathscr{C})=\rho_{k}\right\}$.

Recall: $\quad \rho^{\mathrm{rk}}(\mathscr{C})=\min \left\{i \mid\right.$ for all $N \in \mathbb{F}_{q}^{n \times m}$ there exists $M \in \mathscr{C}$ with $\left.\operatorname{rk}(M, N) \leq i\right\}$.
We have

$$
\lim _{q \rightarrow \infty} \frac{\left|\mathscr{F}^{\prime}\right|}{|\mathscr{F}|}=1, \quad \text { provided that } k<(m-n+\lfloor k / m\rfloor+1)(\lfloor k / m\rfloor+1)
$$

## Remark

Not all rk-metric codes have covering radius $n-\lfloor k / m\rfloor$.

## Thank you very much!

