On the sparsity of MRD codes

Alberto Ravagnani

WCC 2019

joint work with Eimear Byrne

A k-dimensional block code $\mathscr{C} \leq \mathbb{F}_q^n$ is **MDS** if $d_{\mathsf{H}}(\mathscr{C}) = n - k + 1$.

A randomly chosen k-dimensional code is MDS with high probability, if $q \gg 0$.

A k-dimensional block code $\mathscr{C} \leq \mathbb{F}_q^n$ is **MDS** if $d_{\mathsf{H}}(\mathscr{C}) = n - k + 1$.

A randomly chosen k-dimensional code is MDS with high probability, if $q \gg 0$.

In other words...

Theorem (Folklore)Let $n \ge k \ge 1$ be integers. We have $\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$

A k-dimensional block code $\mathscr{C} \leq \mathbb{F}_q^n$ is **MDS** if $d_{\mathsf{H}}(\mathscr{C}) = n - k + 1$.

A randomly chosen k-dimensional code is MDS with high probability, if $q \gg 0$.

In other words...

Theorem (Folklore) Let $n \ge k \ge 1$ be integers. We have $\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$

We say that MDS codes are **dense** within the set of k-dimensional codes in \mathbb{F}_{q}^{n} .

Definition

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $(\mathscr{F}_s \mid s \in S)$ be a sequence of finite non-empty sets indexed by S, and let $(\mathscr{F}'_s \mid s \in S)$ be a sequence of sets with $\mathscr{F}'_s \subseteq \mathscr{F}_s$ for all $s \in S$.

The density function $S \to \mathbb{Q}$ of \mathscr{F}'_s in \mathscr{F}_s is $s \mapsto |\mathscr{F}'_s|/|\mathscr{F}_s|$.

If
$$\lim_{s \to +\infty} |\mathscr{F}'_s| / |\mathscr{F}_s| = \delta,$$

then \mathscr{F}'_s has **density** δ in \mathscr{F}_s .

- $\delta = 1$: \mathscr{F}'_s is dense in \mathscr{F}_s
- $\delta = 0$: \mathscr{F}'_s is sparse in \mathscr{F}_s

Definition

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $(\mathscr{F}_s \mid s \in S)$ be a sequence of finite non-empty sets indexed by S, and let $(\mathscr{F}'_s \mid s \in S)$ be a sequence of sets with $\mathscr{F}'_s \subseteq \mathscr{F}_s$ for all $s \in S$.

The density function $S \to \mathbb{Q}$ of \mathscr{F}'_s in \mathscr{F}_s is $s \mapsto |\mathscr{F}'_s|/|\mathscr{F}_s|$.

If
$$\lim_{s \to +\infty} |\mathscr{F}'_s|/|\mathscr{F}_s| = \delta,$$

then \mathscr{F}'_s has **density** δ in \mathscr{F}_s .

•
$$\delta = 1$$
: \mathscr{F}'_s is dense in \mathscr{F}_s

•
$$\delta = 0$$
: \mathscr{F}'_s is sparse in \mathscr{F}_s

 $\underline{\mathsf{EXAMPLE:}} \qquad S = \mathbb{N}_{\geq 1} \qquad \mathscr{F}_s = \{ n \in \mathbb{N} \mid 1 \le n \le s \} \qquad \mathscr{F}'_s = \{ p \in \mathbb{N} \mid p \le s, \ p \text{ prime} \}.$

Then: $|\mathscr{F}_{s}'|/|\mathscr{F}_{s}| \to 0,$ $|\mathscr{F}_{s}'|/|\mathscr{F}_{s}| \sim 1/\log(s)$

(Hadamard, de la Vallée-Poussin, 1896)

Definition

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $(\mathscr{F}_s \mid s \in S)$ be a sequence of finite non-empty sets indexed by S, and let $(\mathscr{F}'_s \mid s \in S)$ be a sequence of sets with $\mathscr{F}'_s \subseteq \mathscr{F}_s$ for all $s \in S$.

The density function $S \to \mathbb{Q}$ of \mathscr{F}'_s in \mathscr{F}_s is $s \mapsto |\mathscr{F}'_s|/|\mathscr{F}_s|$.

If
$$\lim_{s \to +\infty} |\mathscr{F}'_s| / |\mathscr{F}_s| = \delta$$
,

then \mathscr{F}'_s has **density** δ in \mathscr{F}_s .

EXAMPLE: $S = \mathbb{N}$ $\mathscr{F}_s = \{n \in \mathbb{N} \mid n \le s\}$ $\mathscr{F}'_s = \{n \in \mathbb{N} \mid n \text{ is even}\}.$

Then:
$$|\mathscr{F}'_{s}|/|\mathscr{F}_{s}| \to 1/2$$

The even numbers have density 1/2 within the natural numbers.

Definition

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $(\mathscr{F}_s \mid s \in S)$ be a sequence of finite non-empty sets indexed by S, and let $(\mathscr{F}'_s \mid s \in S)$ be a sequence of sets with $\mathscr{F}'_s \subseteq \mathscr{F}_s$ for all $s \in S$.

The density function $S \to \mathbb{Q}$ of \mathscr{F}'_s in \mathscr{F}_s is $s \mapsto |\mathscr{F}'_s|/|\mathscr{F}_s|$.

If
$$\lim_{s \to +\infty} |\mathscr{F}'_s| / |\mathscr{F}_s| = \delta$$
,

then \mathscr{F}'_s has **density** δ in \mathscr{F}_s .

EXAMPLE: $S = \mathbb{N}$ $\mathscr{F}_s = \{n \in \mathbb{N} \mid n \le s\}$ $\mathscr{F}'_s = \{n \in \mathbb{N} \mid n \text{ is even}\}.$

Then:
$$|\mathscr{F}'_s|/|\mathscr{F}_s| \to 1/2$$

The even numbers have density 1/2 within the natural numbers.

Remark

Let $G \in \mathbb{F}_q^{k \times n}$ is a rank k matrix in reduced row-echelon form. TFAE:

- the rows of G generate a k-dimensional MDS code;
- **2** all the $k \times k$ minors of G are non-zero (in particular, $piv(G) = \{1, ..., k\}$).

Density of MDS codes

Remark

Let $G \in \mathbb{F}_q^{k \times n}$ is a rank k matrix in reduced row-echelon form. TFAE:

- the rows of G generate a k-dimensional MDS code;
- **2** all the $k \times k$ minors of G are non-zero (in particular, $piv(G) = \{1, ..., k\}$).

Consider a matrix of the form $G = (I_k | Y)$, where Y is a $k \times (n-k)$ matrix of independent variables $(z_i | 1 \le i \le N)$ and N = k(n-k).

e.g.
$$\begin{pmatrix} 1 & 0 & z_1 & z_2 & z_3 & z_4 \\ 0 & 1 & z_5 & z_6 & z_7 & z_8 \end{pmatrix}$$
 $N = 8$

Density of MDS codes

Remark

Let $G \in \mathbb{F}_q^{k \times n}$ is a rank k matrix in reduced row-echelon form. TFAE:

- the rows of G generate a k-dimensional MDS code;
- **2** all the $k \times k$ minors of G are non-zero (in particular, $piv(G) = \{1, ..., k\}$).

Consider a matrix of the form $G = (I_k | Y)$, where Y is a $k \times (n-k)$ matrix of independent variables $(z_i | 1 \le i \le N)$ and N = k(n-k).

e.g.
$$\begin{pmatrix} 1 & 0 & z_1 & z_2 & z_3 & z_4 \\ 0 & 1 & z_5 & z_6 & z_7 & z_8 \end{pmatrix}$$
 $N = 8$

Let $p_1, ..., p_M \in \mathbb{F}_q[z_1, ..., z_N]$ be the maximal minors of G, where $M = \binom{n}{k}$. The MDS codes correspond to the vectors $(\alpha_1, ..., \alpha_N) \in \mathbb{F}_q^N$ such that

$$(p_1p_2\cdots p_M)(\alpha_1,...,\alpha_N)\neq 0.$$

Density of MDS codes

Remark

Let $G \in \mathbb{F}_q^{k \times n}$ is a rank k matrix in reduced row-echelon form. TFAE:

- the rows of G generate a k-dimensional MDS code;
- **2** all the $k \times k$ minors of G are non-zero (in particular, $piv(G) = \{1, ..., k\}$).

Consider a matrix of the form $G = (I_k | Y)$, where Y is a $k \times (n-k)$ matrix of independent variables $(z_i | 1 \le i \le N)$ and N = k(n-k).

e.g.
$$\begin{pmatrix} 1 & 0 & z_1 & z_2 & z_3 & z_4 \\ 0 & 1 & z_5 & z_6 & z_7 & z_8 \end{pmatrix}$$
 $N = 8$

Let $p_1, ..., p_M \in \mathbb{F}_q[z_1, ..., z_N]$ be the maximal minors of G, where $M = \binom{n}{k}$. The MDS codes correspond to the vectors $(\alpha_1, ..., \alpha_N) \in \mathbb{F}_q^N$ such that

$$(p_1p_2\cdots p_M)(\alpha_1,...,\alpha_N)\neq 0.$$

Claim

The *k*-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1, ..., \alpha_N) \in \mathbb{F}_q^N$ of a polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1, ..., z_N].$

The *k*-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1, ..., \alpha_N) \in \mathbb{F}_q^N$ of a polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1, ..., z_N].$

Note: deg(p) $\leq kM = k \binom{n}{k}$

The *k*-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1, ..., \alpha_N) \in \mathbb{F}_q^N$ of a polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1, ..., z_N]$.

Note: $\deg(p) \le kM = k\binom{n}{k}$

Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$q^{N}\left(1-q^{-1}kM\right) = q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)$$

The *k*-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1, ..., \alpha_N) \in \mathbb{F}_q^N$ of a polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1, ..., z_N]$.

Note: $\deg(p) \le kM = k\binom{n}{k}$

Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$q^{N}\left(1-q^{-1}kM\right) = q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)$$

and therefore

$$\frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} \ge \frac{q^{k(n-k)} \left(1 - \frac{k}{q} \binom{n}{k}\right)}{\left[\begin{matrix} n \\ k \end{matrix} \right]_q}$$

The *k*-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1, ..., \alpha_N) \in \mathbb{F}_q^N$ of a polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1, ..., z_N]$.

Note: $\deg(p) \le kM = k\binom{n}{k}$

Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$q^{N}\left(1-q^{-1}kM\right) = q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)$$

and therefore

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} \qquad \geq \qquad \lim_{q \to +\infty} \frac{q^{k(n-k)} \left(1 - \frac{k}{q} \binom{n}{k}\right)}{\binom{n}{k}}$$

The *k*-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1, ..., \alpha_N) \in \mathbb{F}_q^N$ of a polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1, ..., z_N]$.

Note: $\deg(p) \le kM = k\binom{n}{k}$

Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$q^{N}\left(1-q^{-1}kM\right) = q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)$$

and therefore

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} \qquad \geq \qquad \lim_{q \to +\infty} \frac{q^{k(n-k)} \left(1 - \frac{\kappa}{q} \binom{n}{k}\right)}{\left[\binom{n}{k}_q\right]} = 1$$

 $\left(l_{1}(n)\right)$

In words: MDS codes are "dense" within the set of k-dimensional codes in \mathbb{F}_q^n .

In words: MDS codes are "dense" within the set of k-dimensional codes in \mathbb{F}_q^n .

We study "density questions" in coding theory in:

E. Byrne, A. Ravagnani Partition-Balanced Families of Codes and Asymptotic Enumeration in Coding Theory arXiv 1805.02049 We study density problems in general:

- Ambient space: Hamming space, vector rk-metric space, matrix rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

We study density problems in general:

- Ambient space: Hamming space, vector rk-metric space, matrix rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

Idea

Look at **families** of codes that exhibit regularity properties with respect to partitions of the ambient space $X \in \{\mathbb{F}_q^n, \mathbb{F}_q^{n}, \mathbb{F}_q^{n \times m}\}$.

Definition

Let $\mathscr{P} = \{P_1, P_2, ..., P_\ell\}$ be a partition of X. A family \mathscr{F} of codes in X is \mathscr{P} -balanced if for all $x \in X$ the number

$$|\{\mathscr{C}\in\mathscr{F}\mid x\in\mathscr{C}\}|$$

only depends to the class of x with respect to the partition \mathcal{P} .

We study density problems in general:

- Ambient space: Hamming space, vector rk-metric space, matrix rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

Idea

Look at **families** of codes that exhibit regularity properties with respect to partitions of the ambient space $X \in \{\mathbb{F}_q^n, \mathbb{F}_q^n, \mathbb{F}_q^{n \times m}\}$.

Definition

Let $\mathscr{P} = \{P_1, P_2, ..., P_\ell\}$ be a partition of X. A family \mathscr{F} of codes in X is \mathscr{P} -balanced if for all $x \in X$ the number

$$|\{\mathscr{C}\in\mathscr{F}\mid x\in\mathscr{C}\}|$$

only depends to the class of x with respect to the partition \mathscr{P} .

We use \mathscr{P} -balanced families to estimate the number of codes with a certain properties.

Hamming space

- $X = \mathbb{F}_q^n$, $d_H(x, y) = |\{i \mid x_i \neq y_i\}|$
- Code: \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^n$
- Bound: a code $\mathscr{C} \leq \mathbb{F}_q^n$ has $\dim(\mathscr{C}) \leq n d_{\mathsf{H}}(\mathscr{C}) + 1$
- Codes meeting the bound: MDS codes (optimal)

Vector rank-metric space

- $X = \mathbb{F}_{q^m}^n$ with $m \ge n$, $d_{\mathsf{rk}}(x, y) = \dim_{\mathbb{F}_q} \operatorname{span}\{x_1 y_1, ..., x_n y_n\}$
- Code: \mathbb{F}_{q^m} -subspace $\mathscr{C} \leq \mathbb{F}_{q^m}^n$
- Bound: a code $\mathscr{C} \leq \mathbb{F}_{q^m}^n$ has $\dim_{\mathbb{F}_{q^m}}(\mathscr{C}) \leq n d_{\mathsf{rk}}(\mathscr{C}) + 1$
- Codes meeting the bound: vector MRD codes (optimal)

Matrix rank-metric space

•
$$X = \mathbb{F}_q^{n \times m}$$
 with $m \ge n$, $d_{\mathsf{rk}}(x, y) = \mathsf{rk}(X - Y)$

- Code: \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$
- Bound: a code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ has $\dim(\mathscr{C}) \leq m(n d_{\mathsf{rk}}(\mathscr{C}) + 1)$
- Codes meeting the bound: matrix MRD codes (optimal)

MRD vector rk-metric codes

Using the Schwartz-Zippel lemma:

Theorem (Neri-Trautmann-Randrianarisoa-Rosenthal, 2017)

$$\frac{\# \text{ of } k\text{-dim MRD codes in } \mathbb{F}_{q^m}^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_{q^m}^n} \ge q^{mk(n-k)} {n \brack k}_{q^m}^{-1} \left(1 - \sum_{r=0}^k {k \brack k-r}_q {n-k \brack r}_q q^{r^2} q^{-m}\right)$$
$$\to 1 \text{ as } m \to +\infty$$

IDEA: MRD vector rk-metric codes are the non-zeros of a polynomial of bounded degree

MRD vector rk-metric codes

Using the Schwartz-Zippel lemma:

Theorem (Neri-Trautmann-Randrianarisoa-Rosenthal, 2017)

$$\frac{\# \text{ of } k\text{-dim MRD codes in } \mathbb{F}_{q^m}^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_{q^m}^n} \ge q^{mk(n-k)} {n \brack k}_{q^m}^{-1} \left(1 - \sum_{r=0}^k {k \brack k-r}_q {n-k \brack r}_q q^{r^2} q^{-m}\right)$$

ightarrow 1 as $m
ightarrow +\infty$

IDEA: MRD vector rk-metric codes are the non-zeros of a polynomial of bounded degree

We can improve this bound as follows:

Theorem (Byrne-R.)

$$\frac{\# \text{ of } k\text{-dim MRD codes in } \mathbb{F}_{q^m}^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_{q^m}^n} \ge 1 - \frac{q^{mk} - 1}{(q^m - 1)(q^{mn} - 1)} \left(-1 + \sum_{i=0}^{d-1} \begin{bmatrix} n \\ i \end{bmatrix}_q \prod_{j=0}^{i-1} (q^m - q^j) \right)$$

MRD matrix codes can be described as the non-zeros of a polynomial.

MRD matrix codes can be described as the non-zeros of a polynomial.

However, MRD matrix codes are not dense!

MRD matrix rk-metric codes

MRD matrix codes can be described as the non-zeros of a polynomial.

However, MRD matrix codes are not dense!

Theorem (Byrne-R.)

Let $m \ge n \ge 2$ and let $1 \le k \le mn - 1$ be integers.

- If *m* does not divide *k*, then there is no *k*-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If *m* divides *k*, then

$$\frac{\# \text{ of } k\text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_q^{n \times m}} \ge q \begin{bmatrix} mn \\ k \end{bmatrix}^{-1} \left(\sum_{h=1}^{m(n-k)} \begin{bmatrix} t \\ h \end{bmatrix} \sum_{s=h}^{m(n-k)} \begin{bmatrix} m(n-k) - h \\ s-h \end{bmatrix} \begin{bmatrix} mn-s \\ mn-k \end{bmatrix} (-1)^{s-h} q^{\binom{s-h}{2}} \right) \cdot \cdot \left(1 - \frac{(q^k-1)(q^{mn-k}-1)}{2(q^{mn}-q^{mn-k})} \right).$$

This quantity goes to 1/2 as $q \to +\infty$ and to $1/2(q/(q-1)-(q-1)^2)$ as $m \to +\infty$.

Corollary (Byrne-R.)

Let $m \ge n \ge 2$ and let $1 \le k \le mn - 1$ be integers.

- If *m* does not divide *k*, then there is no *k*-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If *m* divides *k*, then

$$\limsup_{q \to +\infty}, \liminf_{q \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \ge 1/2.$$

$$\limsup_{m \to +\infty}, \liminf_{m \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \geq \frac{1}{2} \left(\frac{q}{q-1} - (q-1)^{-2} \right) \geq \frac{1}{2}.$$

Matrix MRD codes are <u>NOT</u> dense.

Corollary (Byrne-R.)

Let $m \ge n \ge 2$ and let $1 \le k \le mn - 1$ be integers.

- If *m* does not divide *k*, then there is no *k*-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If *m* divides *k*, then

$$\limsup_{q \to +\infty}, \liminf_{q \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \ge 1/2.$$

$$\limsup_{m \to +\infty}, \liminf_{m \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \geq \frac{1}{2} \left(\frac{q}{q-1} - (q-1)^{-2} \right) \geq \frac{1}{2}.$$

Matrix MRD codes are <u>NOT</u> dense.

Non-density for $q \to +\infty$ was also shown by Antrobus/Gluesing-Luerssen with different methods.

We can study:

- Density of codes that are optimal (MDS, MRD, MRD)
- Density of codes of bounded minimum distance
- Density of codes that meet the *redundancy bound* for their covering radius
- Density of matrix codes that meet the *initial set bound* for their covering radius
- Density of optimal codes within maximal codes (with respect to inclusion)
- Average parameters of codes (e.g., average weight distribution)

• ...

Theorem (Byrne, R.)

Let k be an integer with $0 \le k \le nm$. Denote by \mathscr{F} the family of rank metric codes in $\mathbb{F}_q^{n \times m}$ of dimension k. Define $\rho_k := n - \lfloor k/m \rfloor$, and let $\mathscr{F}' := \{\mathscr{C} \in \mathscr{F} \mid \rho^{\mathsf{rk}}(\mathscr{C}) = \rho_k\}$.

Recall: $\rho^{\mathsf{rk}}(\mathscr{C}) = \min\{i \mid \text{for all } N \in \mathbb{F}_q^{n \times m} \text{ there exists } M \in \mathscr{C} \text{ with } \mathsf{rk}(M, N) \leq i\}.$

We have

$$\lim_{q\to\infty}\frac{|\mathscr{F}'|}{|\mathscr{F}|}=1,\qquad \text{provided that }k<(m-n+\lfloor k/m\rfloor+1)(\lfloor k/m\rfloor+1).$$

Theorem (Byrne, R.)

Let k be an integer with $0 \le k \le nm$. Denote by \mathscr{F} the family of rank metric codes in $\mathbb{F}_q^{n \times m}$ of dimension k. Define $\rho_k := n - \lfloor k/m \rfloor$, and let $\mathscr{F}' := \{\mathscr{C} \in \mathscr{F} \mid \rho^{\mathsf{rk}}(\mathscr{C}) = \rho_k\}$.

Recall: $\rho^{\mathsf{rk}}(\mathscr{C}) = \min\{i \mid \text{for all } N \in \mathbb{F}_q^{n \times m} \text{ there exists } M \in \mathscr{C} \text{ with } \mathsf{rk}(M, N) \leq i\}.$

We have

$$\lim_{q\to\infty}\frac{|\mathscr{F}'|}{|\mathscr{F}|}=1, \qquad \text{provided that } k<(m-n+\lfloor k/m\rfloor+1)(\lfloor k/m\rfloor+1).$$

Remark

Not all rk-metric codes have covering radius $n - \lfloor k/m \rfloor$.

Theorem (Byrne, R.)

Let k be an integer with $0 \le k \le nm$. Denote by \mathscr{F} the family of rank metric codes in $\mathbb{F}_q^{n \times m}$ of dimension k. Define $\rho_k := n - \lfloor k/m \rfloor$, and let $\mathscr{F}' := \{\mathscr{C} \in \mathscr{F} \mid \rho^{\mathsf{rk}}(\mathscr{C}) = \rho_k\}$.

Recall: $\rho^{\mathsf{rk}}(\mathscr{C}) = \min\{i \mid \text{for all } N \in \mathbb{F}_q^{n \times m} \text{ there exists } M \in \mathscr{C} \text{ with } \mathsf{rk}(M, N) \leq i\}.$

We have

$$\lim_{q\to\infty}\frac{|\mathscr{F}'|}{|\mathscr{F}|}=1, \qquad \text{provided that } k<(m-n+\lfloor k/m\rfloor+1)(\lfloor k/m\rfloor+1).$$

Remark

Not all rk-metric codes have covering radius $n - \lfloor k/m \rfloor$.

Thank you very much!