Network Coding and the Combinatorics of Error-Correcting Codes

Alberto Ravagnani

Aarhus University, June 2019

Encoder $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ injective linear map, $n \ge k$.

Encoder $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ injective linear map, $n \ge k$.

Example: binary 3-time repetition scheme

 $E: \mathbb{F}_2 \to \mathbb{F}_2^3$, E(a) = (a, a, a) for all $a \in \mathbb{F}_2$.

Encoder $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ injective linear map, $n \ge k$.

Example: bin	ary 3-time repetition scheme
$E:\mathbb{F}_2 ightarrow \mathbb{F}_2^3,$	$E(a) = (a, a, a)$ for all $a \in \mathbb{F}_2$.

<u>Note</u>: the image of *E* is a *k*-dimensional subspace of \mathbb{F}_{q}^{n} .

Example [continued]

 $E(\mathbb{F}_2) = \{(0,0,0), (1,1,1)\}.$

Encoder $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ injective linear map, $n \ge k$.

Example: binary 3-time repetition scheme		
$E:\mathbb{F}_2\to\mathbb{F}_2^3,$	$E(a)=(a,a,a)$ for all $a\in \mathbb{F}_2.$	

<u>Note</u>: the image of *E* is a *k*-dimensional subspace of \mathbb{F}_{q}^{n} .

Example [continued]

 $E(\mathbb{F}_2) = \{(0,0,0), (1,1,1)\}.$

Definition

A code is an \mathbb{F}_q -linear subspace $\mathscr{C} \leq \mathbb{F}_q^n$. Elements of \mathscr{C} : codewords.

```
(we often forget about E)
```

In a good quality code $\mathscr{C} \leq \mathbb{F}_q^n$, vectors are "far apart"...

Definition

• The Hamming distance between vectors $x, y \in \mathbb{F}_q^n$ is $d_H(x, y) = \#\{i \mid x_i \neq y_i\}$.

In a good quality code $\mathscr{C} \leq \mathbb{F}_q^n$, vectors are "far apart"...

Definition

- The Hamming distance between vectors $x, y \in \mathbb{F}_q^n$ is $d_H(x, y) = \#\{i \mid x_i \neq y_i\}$.
- The Hamming weight of a vector $x \in \mathbb{F}_q^n$ is $\omega_H(x) = d_H(x,0)$.
- The minimum Hamming distance of a code $\mathscr{C} \neq \{0\}$ is the integer

$$d_{\mathsf{H}}(\mathscr{C}) = \min\{d_{\mathsf{H}}(x,y) \mid x, y \in \mathscr{C} \ x \neq y\} = \min\{\omega_{\mathsf{H}}(x) \mid x \in \mathscr{C}, \ x \neq 0\}.$$

In a good quality code $\mathscr{C} \leq \mathbb{F}_q^n$, vectors are "far apart"...

Definition

- The Hamming distance between vectors $x, y \in \mathbb{F}_q^n$ is $d_H(x, y) = \#\{i \mid x_i \neq y_i\}$.
- The Hamming weight of a vector $x \in \mathbb{F}_q^n$ is $\omega_H(x, 0)$.
- The minimum Hamming distance of a code $\mathscr{C} \neq \{0\}$ is the integer

$$d_{\mathsf{H}}(\mathscr{C}) = \min\{d_{\mathsf{H}}(x,y) \mid x, y \in \mathscr{C} \ x \neq y\} = \min\{\omega_{\mathsf{H}}(x) \mid x \in \mathscr{C}, \ x \neq 0\}.$$

<u>Note</u>: a code \mathscr{C} corrects up to $\lfloor (d-1)/2 \rfloor$ errors, where $d = d_{\mathsf{H}}(\mathscr{C})$.

In a good quality code $\mathscr{C} \leq \mathbb{F}_q^n$, vectors are "far apart"...

Definition

- The Hamming distance between vectors $x, y \in \mathbb{F}_q^n$ is $d_H(x, y) = \#\{i \mid x_i \neq y_i\}$.
- The Hamming weight of a vector $x \in \mathbb{F}_q^n$ is $\omega_H(x) = d_H(x,0)$.
- The minimum Hamming distance of a code $\mathscr{C} \neq \{0\}$ is the integer

$$d_{\mathsf{H}}(\mathscr{C}) = \min\{d_{\mathsf{H}}(x,y) \mid x, y \in \mathscr{C} \ x \neq y\} = \min\{\omega_{\mathsf{H}}(x) \mid x \in \mathscr{C}, x \neq 0\}.$$

<u>Note</u>: a code \mathscr{C} corrects up to $\lfloor (d-1)/2 \rfloor$ errors, where $d = d_{\mathsf{H}}(\mathscr{C})$.

Theorem (Singleton, Komamiya)

Let $\mathscr{C} \leq \mathbb{F}_q^n$ be a non-zero code. Then $\dim(\mathscr{C}) \leq n - d_{\mathsf{H}}(\mathscr{C}) + 1$.

If ${\mathscr C}$ meets the bound with equality, then it is called an ${\ensuremath{\mathsf{MDS}}}$ code.

Alberto Ravagnani

Applications

- Satellites
- Space probes (pictures of planets and moons)
- Trains
- CDs, DVDs, flash memories, ...
- QR code
- ISBN code
- Network communication (web, mobile phones, ...)

The LRO (Lunar Reconnaissance Orbiter) is taking pictures of the Moon...

A concrete example

Test of quality of transmissions:

without coding

A concrete example

Test of quality of transmissions:

without coding

with coding

Classical coding theory: one source of information, one terminal.

Classical coding theory: one source of information, one terminal.

Network coding: **one/multiple** sources of information, **multiple** terminals.

Applications: LTE (mobile phones), distributed storage, peer-to-peer, streaming,...

Network coding: data transmission over (noisy/lossy) networks

Network coding: data transmission over (noisy/lossy) networks

- One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

Network coding: data transmission over (noisy/lossy) networks

• One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.

• The terminals demand all the messages (multicast).

What should the nodes do?

Network coding: data transmission over (noisy/lossy) networks

• One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.

• The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).

Network coding: data transmission over (noisy/lossy) networks

• One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.

• The terminals demand **all** the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).

IDEA (Ahlswede-Cai-Li-Yeung 2000): allow the nodes to recombine packets.

Note: This strategy is better than routing.

Note: This strategy is better than routing.

Theorem (Li-Yeung-Cai 2002, Koetter-Médard 2003)

This strategy (linear network coding) applies to general networks and is capacity achieving, provided that $q \gg 0$.

Also, efficient algorithms to design the network operations are available.

Natural solution: design the node operations carefully (decoding at intermediate nodes).

Natural solution: design the node operations carefully (decoding at intermediate nodes). **Other solution:** use rank-metric codes.

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

 $d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

In standard scenarios, communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

In standard scenarios, communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding

Remark 1: for some scenarios, there is no communication scheme based on rk-metric codes with both (1) and (2). E.g., geographically restricted errors, erasures, ... Kschischang, R., *Adversarial Network Coding*, IEEE Trans. Inf. Th. 2018.

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

In standard scenarios, communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding

Remark 1: for some scenarios, there is no communication scheme based on rk-metric codes with both (1) and (2). E.g., geographically restricted errors, erasures, ... Kschischang, R., *Adversarial Network Coding*, IEEE Trans. Inf. Th. 2018.

Remark 2: wireless networks are a very different story

Gorla, R., An Algebraic Framework for End-to-End PLNC, IEEE Trans. Inf. Th. 2018.

Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

- Introduced and studied by Delsarte ('78) for combinatorial interest
- Re-discovered by Gabidulin ('85), Roth ('91) and Cooperstein ('98)
- Re-discovered by Silva-Kschischang-Koetter ('08) for network error amplification

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

- Introduced and studied by Delsarte ('78) for combinatorial interest
- Re-discovered by Gabidulin ('85), Roth ('91) and Cooperstein ('98)
- Re-discovered by Silva-Kschischang-Koetter ('08) for network error amplification

CONVENTION: $2 \le n \le m$.

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

- Introduced and studied by Delsarte ('78) for combinatorial interest
- Re-discovered by Gabidulin ('85), Roth ('91) and Cooperstein ('98)
- Re-discovered by Silva-Kschischang-Koetter ('08) for network error amplification

CONVENTION: $2 \le n \le m$.

There is a rank-analogue of the Singleton bound:

Theorem (Delsarte) Let $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ be a non-zero rank-metric code. We have $\dim(\mathscr{C}) \leq m(n - d_{\mathsf{rk}}(\mathscr{C}) + 1).$

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

- Introduced and studied by Delsarte ('78) for combinatorial interest
- Re-discovered by Gabidulin ('85), Roth ('91) and Cooperstein ('98)
- Re-discovered by Silva-Kschischang-Koetter ('08) for network error amplification

CONVENTION: $2 \le n \le m$.

There is a rank-analogue of the Singleton bound:

Theorem (Delsarte) Let $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ be a non-zero rank-metric code. We have $\dim(\mathscr{C}) \leq m(n - d_{\mathsf{rk}}(\mathscr{C}) + 1).$ A code \mathscr{C} is **MRD** if it meets the bound with equality $(\implies \dim(\mathscr{C}) \equiv 0 \mod m).$

Classes of codes

Hamming space

- \mathbb{F}_q^n , $d_{\mathrm{H}}(x,y) = |\{i \mid x_i \neq y_i\}|$
- Code: \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^n$
- Bound: dim(\mathscr{C}) $\leq n d_{H}(\mathscr{C}) + 1$
- Codes meeting the bound: MDS codes

Matrix rank-metric space

- $\mathbb{F}_q^{n \times m}$ with $n \le m$, $d_{\mathsf{rk}}(X, Y) = \mathsf{rk}(X Y)$
- Code: \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$
- Bound: dim(\mathscr{C}) $\leq m(n d_{\mathsf{rk}}(\mathscr{C}) + 1)$
- Codes meeting the bound: MRD codes

Classes of codes

Hamming space

- \mathbb{F}_q^n , $d_{\mathrm{H}}(x,y) = |\{i \mid x_i \neq y_i\}|$
- Code: \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^n$
- Bound: dim(\mathscr{C}) $\leq n d_{\mathsf{H}}(\mathscr{C}) + 1$
- Codes meeting the bound: MDS codes

Matrix rank-metric space

- $\mathbb{F}_q^{n \times m}$ with $n \le m$, $d_{\mathsf{rk}}(X, Y) = \mathsf{rk}(X Y)$
- Code: \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$
- Bound: dim(\mathscr{C}) $\leq m(n d_{\mathsf{rk}}(\mathscr{C}) + 1)$
- Codes meeting the bound: MRD codes

Vector rank-metric space

- $\mathbb{F}_{q^m}^n$ with $m \ge n$, $d_{\mathsf{rk}}(x, y) = \dim_{\mathbb{F}_q} \operatorname{span}\{x_1 y_1, ..., x_n y_n\}$
- Code: \mathbb{F}_{q^m} -subspace $\mathscr{C} \leq \mathbb{F}_{q^m}^n$
- Bound: $\dim_{\mathbb{F}_{q^m}}(\mathscr{C}) \leq n d_{\mathsf{rk}}(\mathscr{C}) + 1$
- Codes meeting the bound: (vector) MRD codes

 Theorem (Folklore)

 Let $n \ge k \ge 1$ be integers. We have

 $\frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n}$

Theorem (Folklore)Let $n \ge k \ge 1$ be integers. We have $\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n}$

Theorem (Folklore)Let $n \ge k \ge 1$ be integers. We have $\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1$

We say that MDS codes are **dense** within the set of k-dimensional codes in \mathbb{F}_{q}^{n} .

We study "density questions" in coding theory in:

Byrne, R., *Partition-Balanced Families of Codes and Asympt. Enum. in Coding Th.*, arXiv 1805.02049

The notion of density

Definition

lf

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $(\mathscr{F}_s \mid s \in S)$ be a sequence of finite non-empty sets indexed by S, and let $(\mathscr{F}'_s \mid s \in S)$ be a sequence of sets with $\mathscr{F}'_s \subseteq \mathscr{F}_s$ for all $s \in S$.

The density function $S \to \mathbb{Q}$ of \mathscr{F}'_s in \mathscr{F}_s is $s \mapsto |\mathscr{F}'_s|/|\mathscr{F}_s|$.

$$\lim_{s \to +\infty} |\mathscr{F}'_s| / |\mathscr{F}_s| = \delta_s$$

then \mathscr{F}'_s has **density** δ in \mathscr{F}_s .

- $\delta = 1$: \mathscr{F}'_s is dense in \mathscr{F}_s
- $\delta = 0$: \mathscr{F}'_s is sparse in \mathscr{F}_s

The notion of density

Definition

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $(\mathscr{F}_s \mid s \in S)$ be a sequence of finite non-empty sets indexed by S, and let $(\mathscr{F}'_{c} | s \in S)$ be a sequence of sets with $\mathscr{F}'_{c} \subseteq \mathscr{F}_{s}$ for all $s \in S$.

The density function $S \to \mathbb{Q}$ of \mathscr{F}'_s in \mathscr{F}_s is $s \mapsto |\mathscr{F}'_s|/|\mathscr{F}_s|$.

$$\lim_{s\to+\infty} |\mathscr{F}_s'|/|\mathscr{F}_s| = \delta_s$$

then $\mathscr{F}'_{\mathfrak{s}}$ has **density** δ in $\mathscr{F}_{\mathfrak{s}}$.

- $\delta = 1$: \mathscr{F}'_s is dense in \mathscr{F}_s
- $\delta = 0$: \mathscr{F}'_{s} is sparse in \mathscr{F}_{s}

Example

If

$$S = \mathbb{N}_{\geq 1} \qquad \mathscr{F}_s = \{ n \in \mathbb{N} \mid 1 \le n \le s \} \qquad \mathscr{F}'_s = \{ p \in \mathbb{N} \mid p \le s, \ p \text{ prime} \}.$$

Then: $|\mathscr{F}_{s}'|/|\mathscr{F}_{s}| \to 0,$ $|\mathscr{F}_{s}'|/|\mathscr{F}_{s}| \sim 1/\log(s)$

(Hadamard, de la Vallée-Poussin, 1896)

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Sketch of proof

- The k-dimensional MDS codes in \mathbb{F}_q^n are in bijection with the non-zeros of a polynomial $p \in \mathbb{F}_q[z_1, ..., z_N]$, where N = k(n-k).
- $\deg(p) \le k \binom{n}{k}$
- Using the Schwartz-Zippel Lemma, one has

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Sketch of proof

- The k-dimensional MDS codes in \mathbb{F}_q^n are in bijection with the non-zeros of a polynomial $p \in \mathbb{F}_q[z_1, ..., z_N]$, where N = k(n-k).
- $\deg(p) \le k \binom{n}{k}$
- Using the Schwartz-Zippel Lemma, one has

$$\frac{\text{\# of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\text{\# of } k \text{-dim codes in } \mathbb{F}_q^n}$$

$$\frac{q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)}{\begin{bmatrix}n\\k\end{bmatrix}_{q}}$$

 \geq

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Sketch of proof

- The k-dimensional MDS codes in \mathbb{F}_q^n are in bijection with the non-zeros of a polynomial $p \in \mathbb{F}_q[z_1, ..., z_N]$, where N = k(n-k).
- $\deg(p) \le k \binom{n}{k}$
- Using the Schwartz-Zippel Lemma, one has

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} \ge \lim_{q \to +\infty} \frac{q^{k(n-k)} \left(1 - \frac{\kappa}{q} \binom{n}{k}\right)}{\binom{n}{k}_q}$$

k(n)

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Sketch of proof

- The k-dimensional MDS codes in \mathbb{F}_q^n are in bijection with the non-zeros of a polynomial $p \in \mathbb{F}_q[z_1, ..., z_N]$, where N = k(n-k).
- $\deg(p) \le k \binom{n}{k}$
- Using the Schwartz-Zippel Lemma, one has

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} \ge \lim_{q \to +\infty} \frac{q^{k(n-k)} \left(1 - \frac{k}{q} \binom{n}{k}\right)}{\left[\binom{n}{k}_q\right]} = 1$$

1. (...))

Density problems in coding theory

We study density problems in general:

- Ambient space: Hamming space, matrix rk-metric space, vector rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

Density problems in coding theory

We study density problems in general:

- Ambient space: Hamming space, matrix rk-metric space, vector rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

Density problems in coding theory

We study density problems in general:

- Ambient space: Hamming space, matrix rk-metric space, vector rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

classical arguments (based on Schwartz-Zippel Lemma) often fail.

Idea

Look at **families** of codes that exhibit regularity properties with respect to partitions of the ambient space $X \in \{\mathbb{F}_q^n, \mathbb{F}_q^{n \times m}, \mathbb{F}_q^n\}$.

Definition

Let $\mathscr{P} = \{P_1, P_2, ..., P_\ell\}$ be a partition of X. A family \mathscr{F} of codes in X is \mathscr{P} -balanced if for all $x \in X$ the number

$$|\{\mathscr{C}\in\mathscr{F}\mid x\in\mathscr{C}\}|$$

only depends on the class of x with respect to the partition \mathscr{P} .

Density problems in coding theory

We study density problems in general:

- Ambient space: Hamming space, matrix rk-metric space, vector rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

classical arguments (based on Schwartz-Zippel Lemma) often fail.

Idea

Look at **families** of codes that exhibit regularity properties with respect to partitions of the ambient space $X \in \{\mathbb{F}_q^n, \mathbb{F}_q^{n \times m}, \mathbb{F}_q^n\}$.

Definition

Let $\mathscr{P} = \{P_1, P_2, ..., P_\ell\}$ be a partition of X. A family \mathscr{F} of codes in X is \mathscr{P} -balanced if for all $x \in X$ the number

$$|\{\mathscr{C}\in\mathscr{F}\mid x\in\mathscr{C}\}|$$

only depends on the class of x with respect to the partition \mathscr{P} .

We use \mathscr{P} -balanced families to estimate the number of codes with a certain property.

MRD vector rk-metric codes

Using the Schwartz-Zippel lemma:

Theorem (Neri-Trautmann-Randrianarisoa-Rosenthal, 2017)

For vector-rank-metric codes (\mathbb{F}_{q^m} -linear)

$$\frac{\# \text{ of } k\text{-dim MRD codes in } \mathbb{F}_{q^m}^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_{q^m}^n} \ge q^{mk(n-k)} \begin{bmatrix} n \\ k \end{bmatrix}_{q^m}^{-1} \left(1 - \sum_{r=0}^k \begin{bmatrix} k \\ k-r \end{bmatrix}_q \begin{bmatrix} n-k \\ r \end{bmatrix}_q q^{r^2} q^{-m} \right)$$

MRD vector rk-metric codes

Using the Schwartz-Zippel lemma:

Theorem (Neri-Trautmann-Randrianarisoa-Rosenthal, 2017)

For vector-rank-metric codes (\mathbb{F}_{q^m} -linear)

$$\frac{\# \text{ of } k \text{-dim MRD codes in } \mathbb{F}_{q^m}^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_{q^m}^n} \ge q^{mk(n-k)} {n \brack k}_{q^m}^{-1} \left(1 - \sum_{r=0}^k {k \brack k-r}_q {n-k \brack r}_q q^{r^2} q^{-m}\right)$$

We can improve this bound as follows:

Theorem (Byrne-R.)

For vector-rank-metric codes (\mathbb{F}_{q^m} -linear)

$$\frac{\# \text{ of } k\text{-dim MRD codes in } \mathbb{F}_{q^m}^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_{q^m}^n} \ge 1 - \frac{q^{mk} - 1}{(q^m - 1)(q^{mn} - 1)} \left(-1 + \sum_{i=0}^{d-1} \begin{bmatrix} n \\ i \end{bmatrix}_q \prod_{j=0}^{i-1} (q^m - q^j) \right)$$

MRD codes can be seen as the rank-analogue of MDS codes, and they **can** be described as the non-zeros of a polynomial. So one expects them to be dense...

MRD codes can be seen as the rank-analogue of MDS codes, and they **can** be described as the non-zeros of a polynomial. So one expects them to be dense...

However, MRD matrix codes are not dense!

MRD matrix rk-metric codes

MRD codes can be seen as the rank-analogue of MDS codes, and they **can** be described as the non-zeros of a polynomial. So one expects them to be dense...

However, MRD matrix codes are not dense!

Theorem (Byrne-R.)

Let $m \ge n \ge 2$ and let $1 \le k \le mn - 1$ be integers.

- If *m* does not divide *k*, then there is no *k*-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If *m* divides *k*, then

$$\frac{\# \text{ of } k\text{-dim non-MRD codes in } \mathbb{F}_{q}^{n \times m}}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_{q}^{n \times m}} \ge q \begin{bmatrix} mn \\ k \end{bmatrix}^{-1} \left(\sum_{h=1}^{m(n-k)} \begin{bmatrix} t \\ h \end{bmatrix} \sum_{s=h}^{m(n-k)} \begin{bmatrix} m(n-k) - h \\ s-h \end{bmatrix} \begin{bmatrix} mn-s \\ mn-k \end{bmatrix} (-1)^{s-h} q^{\binom{s-h}{2}} \right) \cdot \cdot \left(1 - \frac{(q^{k}-1) (q^{mn-k}-1)}{2 (q^{mn}-q^{mn-k})} \right)$$

The RHS goes to 1/2 as $q \to +\infty$ and to $1/2(q/(q-1)-(q-1)^2)$ as $m \to +\infty$.

Corollary (Byrne-R.)

Let $m \ge n \ge 2$ and let $1 \le k \le mn - 1$ be integers.

- If *m* does not divide *k*, then there is no *k*-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$.
- If *m* divides *k*, then

$$\liminf_{q \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \geq 1/2.$$

$$\liminf_{m \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \geq \frac{1}{2} \left(\frac{q}{q-1} - (q-1)^{-2} \right) \geq 1/2.$$

Matrix MRD codes are not dense

Corollary (Byrne-R.)

Let $m \ge n \ge 2$ and let $1 \le k \le mn - 1$ be integers.

- If *m* does not divide *k*, then there is no *k*-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If *m* divides *k*, then

$$\liminf_{q \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \geq 1/2.$$

$$\liminf_{m \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \geq \frac{1}{2} \left(\frac{q}{q-1} - (q-1)^{-2} \right) \geq 1/2.$$

Matrix MRD codes are not dense

Non-density for $q \to +\infty$ was also shown by Antrobus/Gluesing-Luerssen with different methods.

We can study:

- Density of codes that are **optimal** (MDS, MRD, MRD)
- Density of codes of bounded minimum distance
- Density of codes that meet the *redundancy bound* for their covering radius
- Density of matrix codes that meet the *initial set bound* for their covering radius
- Density of optimal codes within maximal codes (with respect to inclusion)

• ...

R., Whitney numbers of combinatorial geometries, in preparation.

R., Whitney numbers of combinatorial geometries, in preparation.

Question

How many codes $\mathscr{C} \leq \mathbb{F}_q^n$ are there of dimension k and $d_{\mathsf{H}}(\mathscr{C}) > d$?

R., Whitney numbers of combinatorial geometries, in preparation.

Question

How many codes $\mathscr{C} \leq \mathbb{F}_{a}^{n}$ are there of dimension k and $d_{H}(\mathscr{C}) > d$?

Theorem (Dowling, 1971)

Counting codes \leftarrow computing the ch. polynomials of certain geometric lattices.

R., Whitney numbers of combinatorial geometries, in preparation.

Question

How many codes $\mathscr{C} \leq \mathbb{F}_a^n$ are there of dimension k and $d_{\mathsf{H}}(\mathscr{C}) > d$?

Theorem (Dowling, 1971)

Counting codes \leftarrow computing the ch. polynomials of certain geometric lattices.

In particular, of higher-weight Dowling lattices (abbreviated HWDLs).

R., Whitney numbers of combinatorial geometries, in preparation.

Question

How many codes $\mathscr{C} \leq \mathbb{F}_a^n$ are there of dimension k and $d_{\mathsf{H}}(\mathscr{C}) > d$?

Theorem (Dowling, 1971)

Counting codes \leftarrow computing the ch. polynomials of certain geometric lattices.

In particular, of higher-weight Dowling lattices (abbreviated HWDLs).

 $\mathscr{H}(q, n, d)$ is a sublattice of the lattice of subspaces of \mathbb{F}_q^n .

R., Whitney numbers of combinatorial geometries, in preparation.

Question

How many codes $\mathscr{C} \leq \mathbb{F}_a^n$ are there of dimension k and $d_{\mathsf{H}}(\mathscr{C}) > d$?

Theorem (Dowling, 1971)

Counting codes \leftarrow computing the ch. polynomials of certain geometric lattices.

In particular, of higher-weight Dowling lattices (abbreviated HWDLs).

 $\mathscr{H}(q, n, d)$ is a sublattice of the lattice of subspaces of \mathbb{F}_q^n .

- Introduced by Dowling in 1971
- Studied by Dowling, Zaslavsky, Bonin, Kung, Brini, Games
- To date, still very little is known
- Zaslavsky: "this is one of the important open problems in lattice theory"

The following are *equivalent*:

- (partial) knowledge of the number of codes with $d_{\mathsf{H}}(\mathscr{C}) > d$
- (partial) knowledge of the Whitney numbers of HWDL's

The following are *equivalent*:

- (partial) knowledge of the number of codes with $d_{\mathsf{H}}(\mathscr{C}) > d$
- (partial) knowledge of the Whitney numbers of HWDL's

More precisely, let $\alpha_k(q, n, d) = \#\{\mathscr{C} \leq \mathbb{F}_q^n \mid \dim(\mathcal{C}) = k, \ d_{\mathsf{H}}(\mathscr{C}) > d\}.$ Then

$$\begin{aligned} \alpha_k(q,n,d) &= \sum_{i=0}^k w_i(q,n,d) \begin{bmatrix} n-i \\ k-i \end{bmatrix}_q & \text{for } 0 \le k \le n \\ w_i(q,n,d) &= \sum_{k=0}^i \alpha_k(q,n,d) \begin{bmatrix} n-k \\ i-k \end{bmatrix}_q (-1)^{i-k} q^{\binom{i-k}{2}} & \text{for } 0 \le i \le n \end{aligned}$$

Recall: the *i*-th Whitney number of $\mathscr{H}(q, n, d)$ is

$$w_i(q,n,d) = \sum_{\mathsf{rk}(x)=i} \mu_{\mathscr{L}}(0,x)$$

The following are *equivalent*:

- (partial) knowledge of the number of codes with $d_{\mathsf{H}}(\mathscr{C}) > d$
- (partial) knowledge of the Whitney numbers of HWDL's

More precisely, let $\alpha_k(q, n, d) = \#\{\mathscr{C} \leq \mathbb{F}_q^n \mid \dim(\mathcal{C}) = k, \ d_{\mathsf{H}}(\mathscr{C}) > d\}.$ Then

$$\begin{aligned} \alpha_k(q,n,d) &= \sum_{i=0}^k w_i(q,n,d) \begin{bmatrix} n-i \\ k-i \end{bmatrix}_q & \text{for } 0 \le k \le n \\ w_i(q,n,d) &= \sum_{k=0}^i \alpha_k(q,n,d) \begin{bmatrix} n-k \\ i-k \end{bmatrix}_q (-1)^{i-k} q^{\binom{i-k}{2}} & \text{for } 0 \le i \le n \end{aligned}$$

Recall: the *i*-th Whitney number of $\mathscr{H}(q, n, d)$ is

$$w_i(q,n,d) = \sum_{\mathrm{rk}(x)=i} \mu_{\mathscr{L}}(0,x)$$

Strong motivation for studying the Whitney numbers of HWDLs.

For all $n \ge 9$ we have

 $-w_3(2, n, 3) =$

For all $n \ge 9$ we have

$$-w_{3}(2,n,3) = \sum_{1 \le \ell_{1} < \ell_{2} < \ell_{3} \le n-2} \left(\prod_{j=1}^{3} \binom{n-\ell_{j}-9+3j}{2} \right) + 8\binom{n}{3} \sum_{s=3}^{8} \binom{n-3}{n-s} (-1)^{s-3} + 106\binom{n}{4} \sum_{s=4}^{8} \binom{n-4}{n-s} (-1)^{s-4} + 820\binom{n}{5} \sum_{s=5}^{8} \binom{n-5}{n-s} (-1)^{s-5} + 4565\binom{n}{6} \sum_{s=6}^{8} \binom{n-6}{n-s} (-1)^{s-6} + 19810\binom{n}{8} \sum_{s=7}^{8} \binom{n-7}{n-s} (-1)^{s-7} + 70728\binom{n}{8}.$$

For all integers $n \ge d \ge 2$ and any prime power q,

$$\begin{split} w_2(q,n,d) &= (q^{n-1}-1)\sum_{j=1}^d \binom{n}{j}(q-1)^{j-2} - \sum_{1 \le \ell_1 < \ell_2 \le n} \left[q^{n-\ell_1-1} \left(\sum_{j=0}^{d-1} \binom{n-\ell_2}{j} (q-1)^j \right) \right. \\ &+ \sum_{j=d}^{n-\ell_2} \sum_{h=0}^{d-1} \binom{n-\ell_2}{j} \binom{n-\ell_1-1}{h} (q-1)^{j+h} \\ &+ \sum_{s=d}^{n-\ell_2} \sum_{t=0}^{d-2} \binom{n-\ell_2}{s} \binom{n-\ell_1-1-s}{t} (q-1)^{s+t} \sum_{v=d-t}^s \gamma_q(s,s-d+t+2,v) \right], \end{split}$$

where the $\gamma_a(b,c,v)$'s are the agreement numbers.

For all integers $n \ge d \ge 2$ and any prime power q,

$$\begin{split} w_2(q,n,d) &= (q^{n-1}-1)\sum_{j=1}^d \binom{n}{j}(q-1)^{j-2} - \sum_{1 \le \ell_1 < \ell_2 \le n} \left[q^{n-\ell_1-1} \left(\sum_{j=0}^{d-1} \binom{n-\ell_2}{j}(q-1)^j \right) \right. \\ &+ \sum_{j=d}^{n-\ell_2} \sum_{h=0}^{d-1} \binom{n-\ell_2}{j} \binom{n-\ell_1-1}{h}(q-1)^{j+h} \\ &+ \sum_{s=d}^{n-\ell_2} \sum_{t=0}^{d-2} \binom{n-\ell_2}{s} \binom{n-\ell_1-1-s}{t}(q-1)^{s+t} \sum_{v=d-t}^s \gamma_q(s,s-d+t+2,v) \right], \end{split}$$

where the $\gamma_a(b, c, v)$'s are the agreement numbers.

 $\gamma_a(b, c, v)$ is a polynomial in *a* (for any *b*, *c* and *v*) whose coefficients are expressions involving the Bernoulli numbers:

$$\frac{x}{e^{x}-1} = \sum_{n=0}^{+\infty} B_n \frac{x^n}{n!}.$$

New lines of research

• R., Whitney numbers of combinatorial geometries and codes, in preparation.

New interdisciplinary research directions

New lines of research

• R., Whitney numbers of combinatorial geometries and codes, in preparation.

New interdisciplinary research directions

Thank you very much!