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What is network coding about?

Network coding: data transmission over networks (streaming, patches distribution, ...)

SFmq 3 v1, ...,vn

T1

T2

TM

terminals

One source S attempts to transmit messages v1, ...,vn ∈ Fm
q .

The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).

IDEA (Ahlswede-Cai-Li-Yeung 2000): allow the nodes to recombine packets.
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The “Butterfly” network

v1

v2

S

T1

T2

V

v1

v2

v1

v2

v1 +v2

v1 +v2

v1 +v2

v1

v2

This strategy is better than routing.
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Min-cut bound

N the network

S the source

T = {T1, ...,TM} the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)

The (multicast) rate of any communication over N satisfies

rate≤ µ(N ) := min{min-cut(S ,Ti ) | 1≤ i ≤M},

where min-cut(S ,Ti ) is the min. # of edges that one has to remove in N to disconnect
S and Ti .

Question

Can we design node operations (network code) so that the bound is achieved?

YES, if q� 0. In fact, linear operations suffice.
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Example

v1

v2

S

T1

T2

V

v1

v2

v1

v2

v1 +v2

v1 +v2

v1 +v2

v1

v2

min-cut(S ,T1) = min-cut(S ,T2) = 2 ⇒ µ(N ) = 2.

Therefore the strategy is optimal over any field Fq .

Moreover, the node operations are linear.
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The max-flow-min-cut theorem

(not the max-flow-min-cut theorem from graph theory)

Let N be a network, and let n = µ(N ) . Assume that:

the source S sends messages v1, ...,vn ∈ Fn
q ,

the nodes perform linear operations (linear network coding) on the received inputs,

terminal T collects wT
1 , ...,wT

r(T ) from the incoming edges.

Then we can write: 
wT

1

wT
2
...

wT
r(T )

= G(T )


v1

v2

...

vn

 ,

where G(T ) ∈ Fr(T )×n
q is the transfer matrix at T , describing all linear nodes operations.

Theorem (Li-Yeung-Cai 2002; Kötter-Médard 2003)

1 Without loss of generality, r(T ) = n = µ(N ) for all T ∈ T.

2 If q ≥ |T|, then there exist linear nodes operations such that G(T ) is a n×n
invertible matrix for each terminal T ∈ T, simultaneously.
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The max-flow-min-cut theorem

Let n = µ(N ).

S

T

Fn×m
q 3


v1

...

vn


G(T )


v1

...

vn



where G(T ) ∈ Fn×nq is invertible for every T ∈ T (q� 0).

Decoding 
v1

...

vn

= G(T )−1

G(T )


v1

...

vn


 .

Each terminal T ∈ T computes the inverse of its own transfer matrix G(T ).
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The max-flow-min-cut theorem

v1

v2

S

T1

T2

[
1 0

1 1

][
v1

v2

]

[
1 1

0 1

][
v1

v2

]
V

v1

v2

v1

v2

v1 +v2

v1 +v2

v1 +v2

v1

v2
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Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).

Other models are possible (restricted avdersaries, erasures, ...). We study these in:
Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

S

T1

T2

×××
×××

×××
×××
×××

×××
×××

⊗⊗⊗
ERROR AMPLIFICATION

Natural solution: design the node operations carefully (decoding at intermediate nodes).
Other solution: use rank-metric codes.
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Error correction in networks

Suppose we use linear network coding, n = µ(N ).

S

T

Fn×mq 3


v1

...

vn

= X

G(T ) ·X

G(T ) ∈ Fn×nq is invertible for all T ∈ T (q� 0).

In an error-free context: X is sent, G(T ) ·X is received by terminal T ∈ T.

If errors occur: X is sent, Y (T ) 6= G(T ) ·X is received by terminal T ∈ T.

Theorem (Silva-Kschischang-Koetter 2008)

If at most t edges were corrupted, then rk(Y (T )−G(T ) ·X )≤ t for all T ∈ T.

IDEA: use the rank metric as a measure of the discrepancy between Y (T ) and G(T ) ·X .

drk(A,B) = rk(A−B).
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Rank-metric codes

Definition

A rank-metric code is a non-zero Fq-subspace C ≤ Fn×mq . Its minimum distance is

drk(C ) = min{rk(M) |M ∈ C , M 6= 0}.

Codes as math objects  connections to other areas of mathematics:

rank-metric codes and association schemes

rank-metric codes and q-designs (also called subspace designs)

rank-metric codes and lattices

rank-metric codes and semifields

rank-metric codes and q-rook polynomials

rank-metric codes and q-polymatroids

(In the sequel, we assume m ≥ n w.l.o.g.)
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Outline

1 Network coding

2 Rank-metric codes and topics in combinatorics
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MacWilliams identities for the rank metric

Notion of duality in Fn×mq : the trace-product of M,N ∈ Fn×mq is 〈M,N〉 := Tr(MN>).

Definition

The dual of a rank-metric code C ≤ Fn×mq is

C⊥ := {N ∈ Fn×m
q | 〈M,N〉= 0 for all M ∈ C }.

We count the number of rank i matrices in a rank-metric code:

Wi (C ) := |{M ∈ C | rk(M) = i}| (rank enumerator)

Theorem (Delsarte)

Let C ≤ Fn×m
q , and let 0≤ j ≤ n. we have

Wj (C
⊥) =

1

|C |

n

∑
i=0

Wi (C )
n

∑
s=0

(−1)j−s qms+(j−s2 )

[
n− i

s

]
q

[
n− s

j− s

]
q

.

Original proof by Delsarte uses association schemes and recurrence relations.
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MacWilliams identities for the rank metric

For a code C ≤ Fn×mq and a subspace U ≤ Fnq , let

fC (U) := |{M ∈ C | col-space(M) = U}|
gC (U) := ∑

V≤U
fC (V ) = |{M ∈ C | col-space(M)⊆ U}|

Note that:

Wj (C
⊥) = ∑

U≤Fn
q

dim(U)=j

fC ⊥(U) = ∑
U≤Fn

q

dim(U)=j

∑
V≤U

gC ⊥(V ) µ(V ,U),

where µ is the Mœbius function of the lattice of subspaces of Fnq .

Proposition (R.)

gC ⊥(V ) =
qm·dim(V )

|C |
gC (V⊥),

where V⊥ is the orthogonal of V ≤ Fn
q w. r. to the standard inner product of Fnq .
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MacWilliams identities for the rank metric

Wj (C
⊥) =

1

|C |

j

∑
i=0

(−1)j−iqmi+(j−i2 )
∑

U≤Fn
q

dim(U)=j

∑
V≤U

dim(V )=i

gC (V⊥)

...

Theorem (Delsarte)

Wj (C
⊥) =

1

|C |

n

∑
i=0

Wi (C )
n

∑
s=0

(−1)j−s qms+(j−s2 )

[
n− i

s

]
q

[
n− s

j− s

]
q
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MacWilliams identities for the rank metric

Why a new proof?

nice to see things from a different perspective,

proof technique can be “exported” to other contexts (pivot enumerators).

But before looking at other types of MacWilliams identities...

PROBLEMS

Compute the number of rank r matrices M ∈ Fn×mq such that:

their entries sum to zero,

a certain set of diagonal entries are zero (Mii = 0 for all i ∈ I ⊆ {1, ...,n}),

...
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MacWilliams identities for the rank metric

Theorem (R.)

Let /0 6= I ⊆ {1, ...,n}. The number of rank r matrices M ∈ Fn×m
q with Mii = 0 for all i ∈ I

is given by the formula

νr (I ) := q−|I |
|I |

∑
i=0

(
|I |
i

)
(q−1)i

n

∑
s=0

(−1)r−sqms+(r−s2 )

[
n− s

n− r

]
q

[
n− i

s

]
q

.

Let C [I ] be the space of matrices supported on {(i , i) | i ∈ I}.

Then C [I ]≤ Fn×m
q is a linear rank-metric code, and

νr (I ) = Wr (C [I ]⊥) =
1

|C [I ]|

n

∑
i=0

Wi (C [I ])
n

∑
s=0

(−1)j−s qms+(j−s2 )

[
n− i

s

]
q

[
n− s

j− s

]
q

.

Now, |C [I ]|= q|I | and Wi (C [I ]) =

(
|I |
i

)
(q−1)i for all i .
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MacWilliams-type identities

MacWilliams-type identities have been extensively studied in the coding theory literature
in various contexts:

additive codes in finite abelian groups (discrete Fourier analysis),

association schemes (Bose-Mesner algebras),

regular lattices (support maps),

posets (metric spaces from orders),

...

Ingredients:

a structured ambient space A

a dual ambient space Â

a notion of duality: C ⊆ A yields C⊥ ⊆ Â

counting devices on A and Â (e.g., the rank enumerator)
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a notion of duality: C ⊆ A yields C⊥ ⊆ Â
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The pivot partition

For us, A = Â = Fn×m
q . Duality is again trace-duality: C ≤ Fn×m

q yields C⊥ ≤ Fn×mq .

We partition the elements of Fn×m
q according to the pivot indices in their reduced

row-echelon form. This defines a partition Ppiv on Fn×mq . Note:

|Ppiv|=
n

∑
r=0

(
m

r

)
.

Example:

M =


1 • 0 0 •
0 0 1 0 •
0 0 0 1 •
0 0 0 0 0

0 0 0 0 0

 piv(M) = (1,3,4).

Notation

Π = {(j1, ..., jr ) | 1≤ r ≤ n, 1≤ j1 < j2 < · · ·< jr ≤m}∪{()}. Then Ppiv = (Pλ )λ∈Π.

For a code C ≤ Fn×mq and λ ∈ Π, Ppiv(C ,λ ) := |C ∩Pλ |.
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q . Duality is again trace-duality: C ≤ Fn×m

q yields C⊥ ≤ Fn×mq .

We partition the elements of Fn×m
q according to the pivot indices in their reduced

row-echelon form. This defines a partition Ppiv on Fn×mq . Note:

|Ppiv|=
n

∑
r=0

(
m

r

)
.

Example:

M =


1 • 0 0 •
0 0 1 0 •
0 0 0 1 •
0 0 0 0 0

0 0 0 0 0

 piv(M) = (1,3,4).

Notation

Π = {(j1, ..., jr ) | 1≤ r ≤ n, 1≤ j1 < j2 < · · ·< jr ≤m}∪{()}. Then Ppiv = (Pλ )λ∈Π.

For a code C ≤ Fn×mq and λ ∈ Π, Ppiv(C ,λ ) := |C ∩Pλ |.

Alberto Ravagnani (University College Dublin) Network Coding, Rank-Metric Codes, Rook Theory April 2019 17 / 24



The pivot partition

A MacWilliams identities for the pivot enumerator? Not exactly...

Prpiv partitions the elements of Fn×mq according to the pivot indices in their reduced
row-echelon form computed from the right.

Prpiv = (Qµ )µ∈Π, Prpiv(C ,µ) := |C ∩Qµ |.

Theorem (Gluesing-Luerssen, R.)

Let C ≤ Fn×m
q , and let λ ,µ ∈ Π. We have

Prpiv(C⊥,µ) =
1

|C | ∑
λ∈Π

K(λ ,µ) ·Ppiv(C ,λ )

for suitable integers K(λ ,µ). Moreover

(K(λ ,µ))λ ,µ

is an invertible square matrix.

Computing K(λ ,µ)...
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The pivot partition

Definition

A Ferrers diagram is a subset F ⊆ [n]× [m] that satisfies the following:

1 if (i , j) ∈F and j <m, then (i , j + 1) ∈F (right aligned),

2 if (i , j) ∈F and i > 1, then (i −1, j) ∈F (top aligned).

We represent a Ferrers diagram by its column lengths, F = [c1, . . . ,cm].

E.g.

F =

• • • •
• • •
• • •

•

= [1,3,3,4]

We denote by Fq[F ] the space of matrices supported on F , and let

Pr (F ;q) := {M ∈ Fq[F ] | rk(M) = r}.

We can express K(λ ,µ) in terms of Pr (F ;q), for certain r and for a suitable diagram F .

Alberto Ravagnani (University College Dublin) Network Coding, Rank-Metric Codes, Rook Theory April 2019 19 / 24



The pivot partition

Definition

A Ferrers diagram is a subset F ⊆ [n]× [m] that satisfies the following:

1 if (i , j) ∈F and j <m, then (i , j + 1) ∈F (right aligned),

2 if (i , j) ∈F and i > 1, then (i −1, j) ∈F (top aligned).

We represent a Ferrers diagram by its column lengths, F = [c1, . . . ,cm].

E.g.

F =

• • • •
• • •
• • •

•

= [1,3,3,4]

We denote by Fq[F ] the space of matrices supported on F , and let

Pr (F ;q) := {M ∈ Fq[F ] | rk(M) = r}.

We can express K(λ ,µ) in terms of Pr (F ;q), for certain r and for a suitable diagram F .

Alberto Ravagnani (University College Dublin) Network Coding, Rank-Metric Codes, Rook Theory April 2019 19 / 24



The pivot partition

Definition

A Ferrers diagram is a subset F ⊆ [n]× [m] that satisfies the following:

1 if (i , j) ∈F and j <m, then (i , j + 1) ∈F (right aligned),

2 if (i , j) ∈F and i > 1, then (i −1, j) ∈F (top aligned).

We represent a Ferrers diagram by its column lengths, F = [c1, . . . ,cm].

E.g.

F =

• • • •
• • •
• • •

•

= [1,3,3,4]

We denote by Fq[F ] the space of matrices supported on F , and let

Pr (F ;q) := {M ∈ Fq[F ] | rk(M) = r}.

We can express K(λ ,µ) in terms of Pr (F ;q), for certain r and for a suitable diagram F .

Alberto Ravagnani (University College Dublin) Network Coding, Rank-Metric Codes, Rook Theory April 2019 19 / 24



The pivot partition

Theorem (Gluesing-Luerssen, R.)

Let λ , µ ∈ Π. Set

σ = [m]\µ, λ ∩σ = (λα1 , . . . ,λαx ), µ \λ = (µβ1
, . . . ,µβy

).

Furthermore, set

zj = |{i ∈ [x ] | λαi < µβj
}| for j ∈ [y ], F = [z1, . . . ,zy ].

Then

K(λ ,µ) =
m

∑
t=0

(−1)|λ |−tqnt+(|λ |−t2 )
|λ∩σ |

∑
r=0

Pr (F ;q)

[
|λ ∩σ |− r

t

]
q

.

Proof uses various techniques, including the notion of regular support...

(R., Duality of Codes Supported on Regular Lattices, With an Application to
Enumerative Combinatorics, Des., Codes. and Crypt. 2017).

Pr (F ;q) → rook theory
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q-Rook Polynomials

Definition

The q-rook polynomial associated with F and r ≥ 0 is

Rr (F ) = ∑
C∈NARr (F )

qinv(C ,F ) ∈ Z[q],

where:

NARr (F ) is the set of all placements of r non-attacking rooks on F (non-attacking
means that no two rooks are in the same column, and no two are in the same row)

inv(C ,F ) ∈ N is computed as shown on the blackboard

Theorem (Haglund)

For any Ferrers diagram Fand any r ≥ 0 we have

Pr (F ;q) = (q−1)r q|F |−r Rr (F ;q)|q−1

in the ring Z[q,q−1].

Natural task: find an explicit expression for Rr (F ;q).
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q-Rook Polynomials

An explicit formula for Rr (F ):

Theorem (Gluesing-Luerssen, R.)

Let F = [c1, . . . ,cm] be an n×m-Ferrers diagram. For k ∈ [m] define ak = ck −k + 1.

For j ∈ [m] let σj ∈Q[x1, . . . ,xm] be the j th elementary symmetric polynomial in m
indeterminates (σ0 = 1, ..., σm = x1 · · ·xm).

Then

Rr (F ;q) =
q(r+1

2 )−rm+area(F )(−1)m−r

(1−q)r ∏
m−r
k=1 (1−qk)

m

∑
t=m−r

(−1)tσm−t(q−a1 , . . . ,q−am )
m−r−1

∏
j=0

(1−qt−j ).

Combining this with Haglund’s theorem we find an explicit expression for Pr (F ;q).

Proof is technical.
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q-Rook Polynomials

A different approach: compute Pr (F ;q) directly. Notation: F = [c1, ...,cm].

Theorem (Gluesing-Luerssen, R.)

Pr (F ;q) = ∑
1≤i1<···<ir≤m

qrm−∑
r
j=1 ij

r

∏
j=1

(q
cij−j+1−1).

Proof is short.

But inverting Haglund’s theorem we also find a simple explicit formula for Rr (F ;q)!

Corollary (Gluesing-Luerssen, R.)

Rr (F ;q) =

q∑
m
j=1 cj−rm ∑

1≤i1<···<ir≤m

r

∏
j=1

(q
ij+j−cij−1−qij )

(1−q)r
.
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q-Stirling Numbers

We can use these results to derive an explicit formula for the q-Stirling numbers of the
second kind. The latter are defined via the recursion

Sm+1,r = qr−1Sm,r−1 +
qr −1

q−1
Sm,r

with initial conditions S0,0(q) = 1 and Sm,r (q) = 0 for r < 0 or r >m.

Theorem (Garsia, Remmel)

Sm+1,m+1−r = Rr (F ;q),

where F = [1, ...,m] is the upper-triangular m×m Ferrers board.

Theorem (Gluesing-Luerssen, R.)

Sm+1,m+1−r =

q(m+1
2 )−rm

∑
1≤i1<···<ir≤m

r

∏
j=1

(qj−1−qij )

(1−q)r
for 1≤ r ≤m+ 1.

Thank you very much!
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