Network Coding, Rank-Metric Codes, and Rook Theory

Alberto Ravagnani
University College Dublin
Miniconference " c_{2} Invariant Meets Rook Theory"

Berlin, Apr. 2019

Outline

(1) Network coding
(2) Rank-metric codes and topics in combinatorics

Outline

(1) Network coding
(2) Rank-metric codes and topics in combinatorics

What is network coding about?

Network coding: data transmission over networks (streaming, patches distribution, ...)

What is network coding about?

Network coding: data transmission over networks (streaming, patches distribution, ...)

- One source S attempts to transmit messages $v_{1}, \ldots, v_{n} \in \mathbb{F}_{q}^{m}$.
- The terminals demand all the messages (multicast).

What is network coding about?

Network coding: data transmission over networks (streaming, patches distribution, ...)

- One source S attempts to transmit messages $v_{1}, \ldots, v_{n} \in \mathbb{F}_{q}^{m}$.
- The terminals demand all the messages (multicast).

What should the nodes do?

What is network coding about?

Network coding: data transmission over networks (streaming, patches distribution, ...)

- One source S attempts to transmit messages $v_{1}, \ldots, v_{n} \in \mathbb{F}_{q}^{m}$.
- The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).

What is network coding about?

Network coding: data transmission over networks (streaming, patches distribution, ...)

- One source S attempts to transmit messages $v_{1}, \ldots, v_{n} \in \mathbb{F}_{q}^{m}$.
- The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).
IDEA (Ahlswede-Cai-Li-Yeung 2000): allow the nodes to recombine packets.

The "Butterfly" network

This strategy is better than routing.

Min-cut bound

- \mathscr{N} the network
- S the source
- $\mathbf{T}=\left\{T_{1}, \ldots, T_{M}\right\}$ the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)

The (multicast) rate of any communication over \mathscr{N} satisfies

$$
\text { rate } \leq \mu(\mathscr{N}):=\min \left\{\min -\operatorname{cut}\left(S, T_{i}\right) \mid 1 \leq i \leq M\right\},
$$

where min-cut $\left(S, T_{i}\right)$ is the \min. \# of edges that one has to remove in \mathscr{N} to disconnect S and T_{i}.

Min-cut bound

- \mathscr{N} the network
- S the source
- $\mathbf{T}=\left\{T_{1}, \ldots, T_{M}\right\}$ the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)

The (multicast) rate of any communication over \mathscr{N} satisfies

$$
\text { rate } \leq \mu(\mathscr{N}):=\min \left\{\min -\operatorname{cut}\left(S, T_{i}\right) \mid 1 \leq i \leq M\right\},
$$

where min-cut $\left(S, T_{i}\right)$ is the \min. \# of edges that one has to remove in \mathscr{N} to disconnect S and T_{i}.

Question

Can we design node operations (network code) so that the bound is achieved?

Min-cut bound

- \mathscr{N} the network
- S the source
- $\mathbf{T}=\left\{T_{1}, \ldots, T_{M}\right\}$ the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)
The (multicast) rate of any communication over \mathscr{N} satisfies

$$
\text { rate } \leq \mu(\mathscr{N}):=\min \left\{\min -\operatorname{cut}\left(S, T_{i}\right) \mid 1 \leq i \leq M\right\},
$$

where \min-cut $\left(S, T_{i}\right)$ is the \min. \# of edges that one has to remove in \mathscr{N} to disconnect S and T_{i}.

Question

Can we design node operations (network code) so that the bound is achieved?

YES, if $q \gg 0$. In fact, linear operations suffice.

Example

Example

Therefore the strategy is optimal over any field \mathbb{F}_{q}.
Moreover, the node operations are linear.

The max-flow-min-cut theorem

(not the max-flow-min-cut theorem from graph theory)

The max-flow-min-cut theorem

(not the max-flow-min-cut theorem from graph theory)
Let \mathscr{N} be a network, and let $n=\mu(\mathscr{N})$. Assume that:

- the source S sends messages $v_{1}, \ldots, v_{n} \in \mathbb{F}_{q}^{n}$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- terminal T collects $w_{1}^{T}, \ldots, w_{r(T)}^{T}$ from the incoming edges.

The max-flow-min-cut theorem

(not the max-flow-min-cut theorem from graph theory)
Let \mathscr{N} be a network, and let $n=\mu(\mathscr{N})$. Assume that:

- the source S sends messages $v_{1}, \ldots, v_{n} \in \mathbb{F}_{q}^{n}$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- terminal T collects $w_{1}^{T}, \ldots, w_{r(T)}^{T}$ from the incoming edges.

Then we can write:

$$
\left[\begin{array}{c}
w_{1}^{T} \\
w_{2}^{T} \\
\vdots \\
w_{r(T)}^{T}
\end{array}\right]=G(T)\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right],
$$

where $G(T) \in \mathbb{F}_{q}^{r(T) \times n}$ is the transfer matrix at T, describing all linear nodes operations.

The max-flow-min-cut theorem

(not the max-flow-min-cut theorem from graph theory)
Let \mathscr{N} be a network, and let $n=\mu(\mathscr{N})$. Assume that:

- the source S sends messages $v_{1}, \ldots, v_{n} \in \mathbb{F}_{q}^{n}$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- terminal T collects $w_{1}^{T}, \ldots, w_{r(T)}^{T}$ from the incoming edges.

Then we can write:

$$
\left[\begin{array}{c}
w_{1}^{T} \\
w_{2}^{T} \\
\vdots \\
w_{r(T)}^{T}
\end{array}\right]=G(T)\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right],
$$

where $G(T) \in \mathbb{F}_{q}^{r(T) \times n}$ is the transfer matrix at T, describing all linear nodes operations.

Theorem (Li-Yeung-Cai 2002; Kötter-Médard 2003)

(1) Without loss of generality, $r(T)=n=\mu(\mathscr{N})$ for all $T \in \mathbf{T}$.
(2) If $q \geq|\mathbf{T}|$, then there exist linear nodes operations such that $G(T)$ is a $n \times n$ invertible matrix for each terminal $T \in \mathbf{T}$, simultaneously.

The max-flow-min-cut theorem

Let $n=\mu(\mathscr{N})$.

where $G(T) \in \mathbb{F}_{q}^{n \times n}$ is invertible for every $T \in \mathbf{T} \quad(q \gg 0)$.

The max-flow-min-cut theorem

Let $n=\mu(\mathscr{N})$.

where $G(T) \in \mathbb{F}_{q}^{n \times n}$ is invertible for every $T \in \mathbf{T} \quad(q \gg 0)$.

Decoding

$$
\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=G(T)^{-1}\left(G(T)\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]\right)
$$

Each terminal $T \in \mathbf{T}$ computes the inverse of its own transfer matrix $G(T)$.

The max-flow-min-cut theorem

Error correction in networks

Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).
Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).
Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).
Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).
Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).
Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).
Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).
Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).
Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

Natural solution: design the node operations carefully (decoding at intermediate nodes).

Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).
Other models are possible (restricted avdersaries, erasures, ...). We study these in: Kschischang, R., Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

Natural solution: design the node operations carefully (decoding at intermediate nodes). Other solution: use rank-metric codes.

Error correction in networks

Suppose we use linear network coding, $n=\mu(\mathscr{N})$.

Error correction in networks

Suppose we use linear network coding, $n=\mu(\mathscr{N})$.

$G(T) \in \mathbb{F}_{q}^{n \times n}$ is invertible for all $T \in \mathbf{T} \quad(q \gg 0)$.

Error correction in networks

Suppose we use linear network coding, $n=\mu(\mathscr{N})$.

$G(T) \in \mathbb{F}_{q}^{n \times n}$ is invertible for all $T \in \mathbf{T} \quad(q \gg 0)$.

In an error-free context: X is sent, $G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.
If errors occur: X is sent, $\quad Y(T) \neq G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.

Error correction in networks

Suppose we use linear network coding, $n=\mu(\mathscr{N})$.

$G(T) \in \mathbb{F}_{q}^{n \times n}$ is invertible for all $T \in \mathbf{T} \quad(q \gg 0)$.

In an error-free context: X is sent, $\quad G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.
If errors occur: $\quad X$ is sent, $\quad Y(T) \neq G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.
Theorem (Silva-Kschischang-Koetter 2008)
If at most t edges were corrupted, then $\operatorname{rk}(Y(T)-G(T) \cdot X) \leq t$ for all $T \in \mathbf{T}$.

Error correction in networks

Suppose we use linear network coding, $n=\mu(\mathscr{N})$.

$G(T) \in \mathbb{F}_{q}^{n \times n}$ is invertible for all $T \in \mathbf{T} \quad(q \gg 0)$.

In an error-free context: X is sent, $\quad G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.
If errors occur: $\quad X$ is sent, $\quad Y(T) \neq G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.
Theorem (Silva-Kschischang-Koetter 2008)
If at most t edges were corrupted, then $\operatorname{rk}(Y(T)-G(T) \cdot X) \leq t$ for all $T \in \mathbf{T}$.
IDEA: use the rank metric as a measure of the discrepancy between $Y(T)$ and $G(T) \cdot X$.

$$
d_{\mathrm{rk}}(A, B)=\mathrm{rk}(A-B)
$$

Rank-metric codes

Definition

A rank-metric code is a non-zero \mathbb{F}_{q}-subspace $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$. Its minimum distance is

$$
d_{\mathrm{rk}}(\mathscr{C})=\min \{\mathrm{rk}(M) \mid M \in \mathscr{C}, M \neq 0\}
$$

Rank-metric codes

Definition

A rank-metric code is a non-zero \mathbb{F}_{q}-subspace $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$. Its minimum distance is

$$
d_{\mathrm{rk}}(\mathscr{C})=\min \{\operatorname{rk}(M) \mid M \in \mathscr{C}, M \neq 0\}
$$

Codes as math objects \rightsquigarrow connections to other areas of mathematics:

- rank-metric codes and association schemes
- rank-metric codes and q-designs (also called subspace designs)
- rank-metric codes and lattices
- rank-metric codes and semifields
- rank-metric codes and q-rook polynomials
- rank-metric codes and q-polymatroids
(In the sequel, we assume $m \geq n$ w.l.o.g.)

Outline

(1) Network coding
(2) Rank-metric codes and topics in combinatorics

MacWilliams identities for the rank metric

Notion of duality in $\mathbb{F}_{q}^{n \times m}$: the trace-product of $M, N \in \mathbb{F}_{q}^{n \times m}$ is $\langle M, N\rangle:=\operatorname{Tr}\left(M N^{\top}\right)$.

Definition

The dual of a rank-metric code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ is

$$
\mathscr{C}^{\perp}:=\left\{N \in \mathbb{F}_{q}^{n \times m} \mid\langle M, N\rangle=0 \text { for all } M \in \mathscr{C}\right\}
$$

MacWilliams identities for the rank metric

Notion of duality in $\mathbb{F}_{q}^{n \times m}$: the trace-product of $M, N \in \mathbb{F}_{q}^{n \times m}$ is $\langle M, N\rangle:=\operatorname{Tr}\left(M N^{\top}\right)$.

Definition

The dual of a rank-metric code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ is

$$
\mathscr{C}^{\perp}:=\left\{N \in \mathbb{F}_{q}^{n \times m} \mid\langle M, N\rangle=0 \text { for all } M \in \mathscr{C}\right\}
$$

We count the number of rank i matrices in a rank-metric code:

$$
W_{i}(\mathscr{C}):=|\{M \in \mathscr{C} \mid \operatorname{rk}(M)=i\}| \quad \text { (rank enumerator) }
$$

MacWilliams identities for the rank metric

Notion of duality in $\mathbb{F}_{q}^{n \times m}$: the trace-product of $M, N \in \mathbb{F}_{q}^{n \times m}$ is $\langle M, N\rangle:=\operatorname{Tr}\left(M N^{\top}\right)$.

Definition

The dual of a rank-metric code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ is

$$
\mathscr{C}^{\perp}:=\left\{N \in \mathbb{F}_{q}^{n \times m} \mid\langle M, N\rangle=0 \text { for all } M \in \mathscr{C}\right\}
$$

We count the number of rank i matrices in a rank-metric code:

$$
W_{i}(\mathscr{C}):=|\{M \in \mathscr{C} \mid \mathrm{rk}(M)=i\}| \quad \text { (rank enumerator) }
$$

Theorem (Delsarte)

Let $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$, and let $0 \leq j \leq n$. we have

$$
W_{j}\left(\mathscr{C}^{\perp}\right)=\frac{1}{|\mathscr{C}|} \sum_{i=0}^{n} W_{i}(\mathscr{C}) \sum_{s=0}^{n}(-1)^{j-s} q^{m s+\binom{j-s}{2}}\left[\begin{array}{c}
n-i \\
s
\end{array}\right]_{q}\left[\begin{array}{l}
n-s \\
j-s
\end{array}\right]_{q} .
$$

Original proof by Delsarte uses association schemes and recurrence relations.

MacWilliams identities for the rank metric

For a code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ and a subspace $U \leq \mathbb{F}_{q}^{n}$, let

$$
\begin{aligned}
f_{\mathscr{C}}(U) & :=\mid\{M \in \mathscr{C} \mid \text { col-space }(M)=U\} \mid \\
g_{\mathscr{C}}(U) & :=\sum_{V \leq U} f_{\mathscr{C}}(V)=\mid\{M \in \mathscr{C} \mid \text { col-space }(M) \subseteq U\} \mid
\end{aligned}
$$

MacWilliams identities for the rank metric

For a code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ and a subspace $U \leq \mathbb{F}_{q}^{n}$, let

$$
\begin{aligned}
f_{\mathscr{C}}(U) & :=\mid\{M \in \mathscr{C} \mid \text { col-space }(M)=U\} \mid \\
g_{\mathscr{C}}(U) & :=\sum_{V \leq U} f_{\mathscr{C}}(V)=\mid\{M \in \mathscr{C} \mid \text { col-space }(M) \subseteq U\} \mid
\end{aligned}
$$

Note that:

$$
W_{j}\left(\mathscr{C}^{\perp}\right)=\sum_{\substack{U \leq \mathbb{F}^{n}, \operatorname{dim}(U)^{q}=j}} f_{\mathscr{G} \perp}(U)=
$$

MacWilliams identities for the rank metric

For a code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ and a subspace $U \leq \mathbb{F}_{q}^{n}$, let

$$
\begin{aligned}
f_{\mathscr{C}}(U) & :=\mid\{M \in \mathscr{C} \mid \text { col-space }(M)=U\} \mid \\
g_{\mathscr{C}}(U) & :=\sum_{V \leq U} f_{\mathscr{C}}(V)=\mid\{M \in \mathscr{C} \mid \text { col-space }(M) \subseteq U\} \mid
\end{aligned}
$$

Note that:

$$
W_{j}\left(\mathscr{C}^{\perp}\right)=\sum_{\substack{U \leq \mathbb{F}^{n} \\ \operatorname{dim}(U)^{n}=j}} f_{\mathscr{C}^{\perp}}(U)=\sum_{\substack{U \leq \mathbb{F}_{q}^{n} \\ \operatorname{dim}(U)^{\prime}=j}}
$$

MacWilliams identities for the rank metric

For a code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ and a subspace $U \leq \mathbb{F}_{q}^{n}$, let

$$
\begin{aligned}
f_{\mathscr{C}}(U) & :=\mid\{M \in \mathscr{C} \mid \text { col-space }(M)=U\} \mid \\
g_{\mathscr{C}}(U) & :=\sum_{V \leq U} f_{\mathscr{C}}(V)=\mid\{M \in \mathscr{C} \mid \text { col-space }(M) \subseteq U\} \mid
\end{aligned}
$$

Note that:

$$
W_{j}\left(\mathscr{C}^{\perp}\right)=\sum_{\substack{U \leq \mathbb{F}_{q}^{n} \\ \operatorname{dim}(U)^{n}=j}} f_{\mathscr{C} \perp}(U)=\sum_{\substack{U \leq \mathbb{F}^{n} \\ \operatorname{dim}(U)^{q}=j}} \sum_{V \leq U} g_{\mathscr{C} \perp}(V) \mu(V, U),
$$

where μ is the Mœbius function of the lattice of subspaces of \mathbb{F}_{q}^{n}.

MacWilliams identities for the rank metric

For a code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ and a subspace $U \leq \mathbb{F}_{q}^{n}$, let

$$
\begin{aligned}
f_{\mathscr{C}}(U) & :=\mid\{M \in \mathscr{C} \mid \text { col-space }(M)=U\} \mid \\
g_{\mathscr{C}}(U) & :=\sum_{V \leq U} f_{\mathscr{C}}(V)=\mid\{M \in \mathscr{C} \mid \text { col-space }(M) \subseteq U\} \mid
\end{aligned}
$$

Note that:

$$
W_{j}\left(\mathscr{C}^{\perp}\right)=\sum_{\substack{U \leq \mathbb{F}_{q}^{n} \\ \operatorname{dim}(U)^{\prime}=j}} f_{\mathscr{C} \perp}(U)=\sum_{\substack{U \leq \mathbb{F}^{n}, \operatorname{dim}(U)^{g}=j}} \sum_{V \leq U} g_{\mathscr{C} \perp}(V) \mu(V, U),
$$

where μ is the Mœbius function of the lattice of subspaces of \mathbb{F}_{q}^{n}.

Proposition (R.)

$$
g_{\mathscr{C} \perp}(V)=\frac{q^{m \cdot d i m}(V)}{|\mathscr{C}|} g_{\mathscr{C}}\left(V^{\perp}\right),
$$

where V^{\perp} is the orthogonal of $V \leq \mathbb{F}_{q}^{n}$ w. r. to the standard inner product of \mathbb{F}_{q}^{n}.

MacWilliams identities for the rank metric

$$
W_{j}\left(\mathscr{C}^{\perp}\right)=\frac{1}{|\mathscr{C}|} \sum_{i=0}^{j}(-1)^{j-i} q^{m i+\left(\left(_{2}^{j-i}\right)\right.} \sum_{\substack{U \leq \mathbb{F}_{G}^{n} \\ \operatorname{dim}(U)=j}} \sum_{\substack{V \leq U \\ \operatorname{dim}(V)=i}} g_{\mathscr{C}}\left(V^{\perp}\right)
$$

MacWilliams identities for the rank metric

$$
W_{j}\left(\mathscr{C}^{\perp}\right)=\frac{1}{|\mathscr{C}|} \sum_{i=0}^{j}(-1)^{j-i} q^{m i+\left(\left(_{2}^{j-i}\right)\right.} \sum_{\substack{U \leq \mathbb{F}_{G}^{n} \\ \operatorname{dim}(U)=j}} \sum_{\substack{V \leq U \\ \operatorname{dim}(V)=i}} g_{\mathscr{C}}\left(V^{\perp}\right)
$$

Theorem (Delsarte)

$$
W_{j}\left(\mathscr{C}^{\perp}\right)=\frac{1}{|\mathscr{C}|} \sum_{i=0}^{n} W_{i}(\mathscr{C}) \sum_{s=0}^{n}(-1)^{j-s} q^{m s+\left(j_{2}^{j-s}\right)}\left[\begin{array}{c}
n-i \\
s
\end{array}\right]_{q}\left[\begin{array}{l}
n-s \\
j-s
\end{array}\right]_{q}
$$

MacWilliams identities for the rank metric

Why a new proof?

- nice to see things from a different perspective,
- proof technique can be "exported" to other contexts (pivot enumerators).

But before looking at other types of MacWilliams identities...

MacWilliams identities for the rank metric

Why a new proof?

- nice to see things from a different perspective,
- proof technique can be "exported" to other contexts (pivot enumerators).

But before looking at other types of MacWilliams identities...

PROBLEMS

Compute the number of rank r matrices $M \in \mathbb{F}_{q}^{n \times m}$ such that:

- their entries sum to zero,
- a certain set of diagonal entries are zero ($M_{i i}=0$ for all $i \in I \subseteq\{1, \ldots, n\}$),
- ...

MacWilliams identities for the rank metric

Theorem (R.)

Let $\emptyset \neq I \subseteq\{1, \ldots, n\}$. The number of rank r matrices $M \in \mathbb{F}_{q}^{n \times m}$ with $M_{i i}=0$ for all $i \in I$ is given by the formula

$$
v_{r}(I):=q^{-|I|} \sum_{i=0}^{|I|}\binom{|I|}{i}(q-1)^{i} \sum_{s=0}^{n}(-1)^{r-s} q^{m s+\binom{r-s}{2}}\left[\begin{array}{l}
n-s \\
n-r
\end{array}\right]_{q}\left[\begin{array}{c}
n-i \\
s
\end{array}\right]_{q} .
$$

MacWilliams identities for the rank metric

Theorem (R.)

Let $\emptyset \neq I \subseteq\{1, \ldots, n\}$. The number of rank r matrices $M \in \mathbb{F}_{q}^{n \times m}$ with $M_{i i}=0$ for all $i \in I$ is given by the formula

$$
v_{r}(I):=q^{-|I|} \sum_{i=0}^{|I|}\binom{|I|}{i}(q-1)^{i} \sum_{s=0}^{n}(-1)^{r-s} q^{m s+\binom{r-s}{2}}\left[\begin{array}{l}
n-s \\
n-r
\end{array}\right]_{q}\left[\begin{array}{c}
n-i \\
s
\end{array}\right]_{q} .
$$

Let $\mathscr{C}[I]$ be the space of matrices supported on $\{(i, i) \mid i \in I\}$.
Then $\mathscr{C}[I] \leq \mathbb{F}_{q}^{n \times m}$ is a linear rank-metric code, and

$$
v_{r}(I)=W_{r}\left(\mathscr{C}[I]^{\perp}\right)
$$

MacWilliams identities for the rank metric

Theorem (R.)

Let $\emptyset \neq I \subseteq\{1, \ldots, n\}$. The number of rank r matrices $M \in \mathbb{F}_{q}^{n \times m}$ with $M_{i i}=0$ for all $i \in I$ is given by the formula

$$
v_{r}(I):=q^{-|I|} \sum_{i=0}^{|I|}\binom{|I|}{i}(q-1)^{i} \sum_{s=0}^{n}(-1)^{r-s} q^{m s+\binom{r-s}{2}}\left[\begin{array}{l}
n-s \\
n-r
\end{array}\right]_{q}\left[\begin{array}{c}
n-i \\
s
\end{array}\right]_{q} .
$$

Let $\mathscr{C}[I]$ be the space of matrices supported on $\{(i, i) \mid i \in I\}$.
Then $\mathscr{C}[I] \leq \mathbb{F}_{q}^{n \times m}$ is a linear rank-metric code, and

$$
v_{r}(I)=W_{r}\left(\mathscr{C}[I]^{\perp}\right)=\frac{1}{|\mathscr{C}[I]|} \sum_{i=0}^{n} W_{i}(\mathscr{C}[I]) \sum_{s=0}^{n}(-1)^{j-s} q^{m s+\binom{j-s}{2}}\left[\begin{array}{c}
n-i \\
s
\end{array}\right]_{q}\left[\begin{array}{l}
n-s \\
j-s
\end{array}\right]_{q} .
$$

MacWilliams identities for the rank metric

Theorem (R.)

Let $\emptyset \neq I \subseteq\{1, \ldots, n\}$. The number of rank r matrices $M \in \mathbb{F}_{q}^{n \times m}$ with $M_{i i}=0$ for all $i \in I$ is given by the formula

$$
v_{r}(I):=q^{-|I|} \sum_{i=0}^{|I|}\binom{|I|}{i}(q-1)^{i} \sum_{s=0}^{n}(-1)^{r-s} q^{m s+\binom{r-s}{2}}\left[\begin{array}{l}
n-s \\
n-r
\end{array}\right]_{q}\left[\begin{array}{c}
n-i \\
s
\end{array}\right]_{q} .
$$

Let $\mathscr{C}[I]$ be the space of matrices supported on $\{(i, i) \mid i \in I\}$.
Then $\mathscr{C}[I] \leq \mathbb{F}_{q}^{n \times m}$ is a linear rank-metric code, and

$$
v_{r}(I)=W_{r}\left(\mathscr{C}[I]^{\perp}\right)=\frac{1}{|\mathscr{C}[I]|} \sum_{i=0}^{n} W_{i}(\mathscr{C}[I]) \sum_{s=0}^{n}(-1)^{j-s} q^{m s+\binom{j-s}{2}}\left[\begin{array}{c}
n-i \\
s
\end{array}\right]_{q}\left[\begin{array}{l}
n-s \\
j-s
\end{array}\right]_{q} .
$$

Now, $\quad|\mathscr{C}[I]|=q^{|I|} \quad$ and $\quad W_{i}(\mathscr{C}[I])=\binom{|I|}{i}(q-1)^{i}$ for all i.

MacWilliams-type identities

MacWilliams-type identities have been extensively studied in the coding theory literature in various contexts:

- additive codes in finite abelian groups (discrete Fourier analysis),
- association schemes (Bose-Mesner algebras),
- regular lattices (support maps),
- posets (metric spaces from orders),
- ...

MacWilliams-type identities

MacWilliams-type identities have been extensively studied in the coding theory literature in various contexts:

- additive codes in finite abelian groups (discrete Fourier analysis),
- association schemes (Bose-Mesner algebras),
- regular lattices (support maps),
- posets (metric spaces from orders),
- ...

Ingredients:

- a structured ambient space A
- a dual ambient space \widehat{A}
- a notion of duality: $\mathscr{C} \subseteq A$ yields $\mathscr{C}^{\perp} \subseteq \widehat{A}$
- counting devices on A and \widehat{A} (e.g., the rank enumerator)

The pivot partition

For us, $A=\widehat{A}=\mathbb{F}_{q}^{n \times m}$. Duality is again trace-duality: $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ yields $\mathscr{C}^{\perp} \leq \mathbb{F}_{q}^{n \times m}$.

We partition the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices in their reduced row-echelon form. This defines a partition $\mathscr{P}^{\text {piv }}$ on $\mathbb{F}_{q}^{n \times m}$. Note:

$$
\left|\mathscr{P}^{\mathrm{piv}}\right|=\sum_{r=0}^{n}\binom{m}{r} .
$$

The pivot partition

For us, $A=\widehat{A}=\mathbb{F}_{q}^{n \times m}$. Duality is again trace-duality: $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ yields $\mathscr{C}^{\perp} \leq \mathbb{F}_{q}^{n \times m}$.

We partition the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices in their reduced row-echelon form. This defines a partition $\mathscr{P}^{\text {piv }}$ on $\mathbb{F}_{q}^{n \times m}$. Note:

$$
\left|\mathscr{P}^{\mathrm{piv}}\right|=\sum_{r=0}^{n}\binom{m}{r} .
$$

Example:

$$
M=\left(\begin{array}{ccccc}
1 & \bullet & 0 & 0 & \bullet \\
0 & 0 & 1 & 0 & \bullet \\
0 & 0 & 0 & 1 & \bullet \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \operatorname{piv}(M)=(1,3,4)
$$

The pivot partition

For us, $A=\widehat{A}=\mathbb{F}_{q}^{n \times m}$. Duality is again trace-duality: $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ yields $\mathscr{C}^{\perp} \leq \mathbb{F}_{q}^{n \times m}$.

We partition the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices in their reduced row-echelon form. This defines a partition $\mathscr{P}^{\text {piv }}$ on $\mathbb{F}_{q}^{n \times m}$. Note:

$$
\left|\mathscr{P}^{\text {piv }}\right|=\sum_{r=0}^{n}\binom{m}{r} .
$$

Example:

$$
M=\left(\begin{array}{ccccc}
1 & \bullet & 0 & 0 & \bullet \\
0 & 0 & 1 & 0 & \bullet \\
0 & 0 & 0 & 1 & \bullet \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \operatorname{piv}(M)=(1,3,4)
$$

Notation

$\Pi=\left\{\left(j_{1}, \ldots, j_{r}\right) \mid 1 \leq r \leq n, \quad 1 \leq j_{1}<j_{2}<\cdots<j_{r} \leq m\right\} \cup\{()\}$. Then $\mathscr{P}^{\text {piv }}=\left(P_{\lambda}\right)_{\lambda \in \Pi}$.
For a code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ and $\lambda \in \Pi, \quad \mathscr{P}^{\text {piv }}(\mathscr{C}, \lambda):=\left|\mathscr{C} \cap P_{\lambda}\right|$.

The pivot partition

A MacWilliams identities for the pivot enumerator? Not exactly...

The pivot partition

A MacWilliams identities for the pivot enumerator? Not exactly...
$\mathscr{P}{ }^{r p i v}$ partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices in their reduced row-echelon form computed from the right.

$$
\mathscr{P}^{\text {rpiv }}=\left(Q_{\mu}\right)_{\mu \in \Pi}, \quad \quad \mathscr{P}^{\text {rpiv }}(\mathscr{C}, \mu):=\left|\mathscr{C} \cap Q_{\mu}\right|
$$

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$, and let $\lambda, \mu \in \Pi$. We have

$$
\mathscr{P}^{\mathrm{rpiv}}\left(\mathscr{C}^{\perp}, \mu\right)=\frac{1}{|\mathscr{C}|} \sum_{\lambda \in \Pi} K(\lambda, \mu) \cdot \mathscr{P}^{\mathrm{piv}}(\mathscr{C}, \lambda)
$$

for suitable integers $K(\lambda, \mu)$. Moreover

$$
(K(\lambda, \mu))_{\lambda, \mu}
$$

is an invertible square matrix.

The pivot partition

A MacWilliams identities for the pivot enumerator? Not exactly...
$\mathscr{P}{ }^{r p i v}$ partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices in their reduced row-echelon form computed from the right.

$$
\mathscr{P}^{\text {rpiv }}=\left(Q_{\mu}\right)_{\mu \in \Pi}, \quad \quad \mathscr{P}^{\text {rpiv }}(\mathscr{C}, \mu):=\left|\mathscr{C} \cap Q_{\mu}\right|
$$

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$, and let $\lambda, \mu \in \Pi$. We have

$$
\mathscr{P}^{\mathrm{rpiv}}\left(\mathscr{C}^{\perp}, \mu\right)=\frac{1}{|\mathscr{C}|} \sum_{\lambda \in \Pi} K(\lambda, \mu) \cdot \mathscr{P}^{\mathrm{piv}}(\mathscr{C}, \lambda)
$$

for suitable integers $K(\lambda, \mu)$. Moreover

$$
(K(\lambda, \mu))_{\lambda, \mu}
$$

is an invertible square matrix.
Computing $K(\lambda, \mu) \ldots$

The pivot partition

Definition

A Ferrers diagram is a subset $\mathscr{F} \subseteq[n] \times[m]$ that satisfies the following:
(1) if $(i, j) \in \mathscr{F}$ and $j<m$, then $(i, j+1) \in \mathscr{F}$ (right aligned),
(2) if $(i, j) \in \mathscr{F}$ and $i>1$, then $(i-1, j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$.
E.g.

The pivot partition

Definition

A Ferrers diagram is a subset $\mathscr{F} \subseteq[n] \times[m]$ that satisfies the following:
(1) if $(i, j) \in \mathscr{F}$ and $j<m$, then $(i, j+1) \in \mathscr{F}$ (right aligned),
(2) if $(i, j) \in \mathscr{F}$ and $i>1$, then $(i-1, j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$.
E.g.

We denote by $\mathbb{F}_{q}[\mathscr{F}]$ the space of matrices supported on \mathscr{F}, and let

$$
P_{r}(\mathscr{F} ; q):=\left\{M \in \mathbb{F}_{q}[\mathscr{F}] \mid \operatorname{rk}(M)=r\right\} .
$$

The pivot partition

Definition

A Ferrers diagram is a subset $\mathscr{F} \subseteq[n] \times[m]$ that satisfies the following:
(1) if $(i, j) \in \mathscr{F}$ and $j<m$, then $(i, j+1) \in \mathscr{F}$ (right aligned),
(2) if $(i, j) \in \mathscr{F}$ and $i>1$, then $(i-1, j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$.
E.g.

We denote by $\mathbb{F}_{q}[\mathscr{F}]$ the space of matrices supported on \mathscr{F}, and let

$$
P_{r}(\mathscr{F} ; q):=\left\{M \in \mathbb{F}_{q}[\mathscr{F}] \mid \operatorname{rk}(M)=r\right\} .
$$

We can express $K(\lambda, \mu)$ in terms of $P_{r}(\mathscr{F} ; q)$, for certain r and for a suitable diagram \mathscr{F}.

The pivot partition

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$
\sigma=[m] \backslash \mu, \quad \lambda \cap \sigma=\left(\lambda_{\alpha_{1}}, \ldots, \lambda_{\alpha_{x}}\right), \quad \mu \backslash \lambda=\left(\mu_{\beta_{1}}, \ldots, \mu_{\beta_{y}}\right) .
$$

Furthermore, set

$$
z_{j}=\left|\left\{i \in[x] \mid \lambda_{\alpha_{i}}<\mu_{\beta_{j}}\right\}\right| \text { for } j \in[y], \quad \mathscr{F}=\left[z_{1}, \ldots, z_{y}\right] .
$$

The pivot partition

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$
\sigma=[m] \backslash \mu, \quad \lambda \cap \sigma=\left(\lambda_{\alpha_{1}}, \ldots, \lambda_{\alpha_{x}}\right), \quad \mu \backslash \lambda=\left(\mu_{\beta_{1}}, \ldots, \mu_{\beta_{y}}\right)
$$

Furthermore, set

$$
z_{j}=\left|\left\{i \in[x] \mid \lambda_{\alpha_{i}}<\mu_{\beta_{j}}\right\}\right| \text { for } j \in[y], \quad \mathscr{F}=\left[z_{1}, \ldots, z_{y}\right] .
$$

Then

$$
K(\lambda, \mu)=\sum_{t=0}^{m}(-1)^{|\lambda|-t} q^{n t+\binom{|\lambda|-t}{2}} \sum_{r=0}^{|\lambda \cap \sigma|} P_{r}(\mathscr{F} ; q)\left[\begin{array}{c}
|\lambda \cap \sigma|-r \\
t
\end{array}\right]_{q} .
$$

The pivot partition

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$
\sigma=[m] \backslash \mu, \quad \lambda \cap \sigma=\left(\lambda_{\alpha_{1}}, \ldots, \lambda_{\alpha_{x}}\right), \quad \mu \backslash \lambda=\left(\mu_{\beta_{1}}, \ldots, \mu_{\beta_{y}}\right) .
$$

Furthermore, set

$$
z_{j}=\left|\left\{i \in[x] \mid \lambda_{\alpha_{i}}<\mu_{\beta_{j}}\right\}\right| \text { for } j \in[y], \quad \mathscr{F}=\left[z_{1}, \ldots, z_{y}\right] .
$$

Then

$$
K(\lambda, \mu)=\sum_{t=0}^{m}(-1)^{|\lambda|-t} q^{n t+(\underset{2}{\lambda \mid-t})} \sum_{r=0}^{|\lambda \cap \sigma|} P_{r}(\mathscr{F} ; q)\left[\begin{array}{c}
|\lambda \cap \sigma|-r \\
t
\end{array}\right]_{q} .
$$

Proof uses various techniques, including the notion of regular support...
(R., Duality of Codes Supported on Regular Lattices, With an Application to Enumerative Combinatorics, Des., Codes. and Crypt. 2017).

The pivot partition

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$
\sigma=[m] \backslash \mu, \quad \lambda \cap \sigma=\left(\lambda_{\alpha_{1}}, \ldots, \lambda_{\alpha_{x}}\right), \quad \mu \backslash \lambda=\left(\mu_{\beta_{1}}, \ldots, \mu_{\beta_{y}}\right) .
$$

Furthermore, set

$$
z_{j}=\left|\left\{i \in[x] \mid \lambda_{\alpha_{i}}<\mu_{\beta_{j}}\right\}\right| \text { for } j \in[y], \quad \mathscr{F}=\left[z_{1}, \ldots, z_{y}\right] .
$$

Then

$$
K(\lambda, \mu)=\sum_{t=0}^{m}(-1)^{|\lambda|-t} q^{n t+\binom{\lambda \mid-t}{2}} \sum_{r=0}^{|\lambda \cap \sigma|} P_{r}(\mathscr{F} ; q)\left[\begin{array}{c}
|\lambda \cap \sigma|-r \\
t
\end{array}\right]_{q} .
$$

Proof uses various techniques, including the notion of regular support...
(R., Duality of Codes Supported on Regular Lattices, With an Application to Enumerative Combinatorics, Des., Codes. and Crypt. 2017).
$P_{r}(\mathscr{F} ; q) \rightarrow$ rook theory

q-Rook Polynomials

Definition

The q-rook polynomial associated with \mathscr{F} and $r \geq 0$ is

$$
R_{r}(\mathscr{F})=\sum_{C \in \operatorname{NAR}_{r}(\mathscr{F})} q^{\operatorname{inv}(C, \mathscr{F})} \in \mathbb{Z}[q]
$$

where:

- $\operatorname{NAR}_{r}(\mathscr{F})$ is the set of all placements of r non-attacking rooks on \mathscr{F} (non-attacking means that no two rooks are in the same column, and no two are in the same row)
- $\operatorname{inv}(C, \mathscr{F}) \in \mathbb{N}$ is computed as shown on the blackboard

q-Rook Polynomials

Definition

The q-rook polynomial associated with \mathscr{F} and $r \geq 0$ is
where:

- $\operatorname{NAR}_{r}(\mathscr{F})$ is the set of all placements of r non-attacking rooks on \mathscr{F} (non-attacking means that no two rooks are in the same column, and no two are in the same row)
- $\operatorname{inv}(C, \mathscr{F}) \in \mathbb{N}$ is computed as shown on the blackboard

Theorem (Haglund)

For any Ferrers diagram \mathscr{F} and any $r \geq 0$ we have

$$
P_{r}(\mathscr{F} ; q)=(q-1)^{r} q^{|\mathscr{F}|-r} R_{r}(\mathscr{F} ; q)_{\mid q^{-1}}
$$

in the ring $\mathbb{Z}\left[q, q^{-1}\right]$.
Natural task: find an explicit expression for $R_{r}(\mathscr{F} ; q)$.

q-Rook Polynomials

An explicit formula for $R_{r}(\mathscr{F})$:

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$ be an $n \times m$-Ferrers diagram. For $k \in[m]$ define $a_{k}=c_{k}-k+1$.
For $j \in[m]$ let $\sigma_{j} \in \mathbb{Q}\left[x_{1}, \ldots, x_{m}\right]$ be the $j^{\text {th }}$ elementary symmetric polynomial in m indeterminates $\left(\sigma_{0}=1, \ldots, \sigma_{m}=x_{1} \cdots x_{m}\right)$.

Then
$R_{r}(\mathscr{F} ; q)=\frac{q^{\binom{r+1}{2}-r m+\operatorname{area}(\mathscr{F})}(-1)^{m-r}}{(1-q)^{r} \prod_{k=1}^{m-r}\left(1-q^{k}\right)} \sum_{t=m-r}^{m}(-1)^{t} \sigma_{m-t}\left(q^{-a_{1}}, \ldots, q^{-a_{m}}\right) \prod_{j=0}^{m-r-1}\left(1-q^{t-j}\right)$.

q-Rook Polynomials

An explicit formula for $R_{r}(\mathscr{F})$:

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$ be an $n \times m$-Ferrers diagram. For $k \in[m]$ define $a_{k}=c_{k}-k+1$.
For $j \in[m]$ let $\sigma_{j} \in \mathbb{Q}\left[x_{1}, \ldots, x_{m}\right]$ be the $j^{\text {th }}$ elementary symmetric polynomial in m indeterminates $\left(\sigma_{0}=1, \ldots, \sigma_{m}=x_{1} \cdots x_{m}\right)$.

Then
$R_{r}(\mathscr{F} ; q)=\frac{q^{\binom{r+1}{2}-r m+\operatorname{area}(\mathscr{F})}(-1)^{m-r}}{(1-q)^{r} \prod_{k=1}^{m-r}\left(1-q^{k}\right)} \sum_{t=m-r}^{m}(-1)^{t} \sigma_{m-t}\left(q^{-a_{1}}, \ldots, q^{-a_{m}}\right) \prod_{j=0}^{m-r-1}\left(1-q^{t-j}\right)$.

Combining this with Haglund's theorem we find an explicit expression for $P_{r}(\mathscr{F} ; q)$.
Proof is technical.

q-Rook Polynomials

A different approach: compute $P_{r}(\mathscr{F} ; q)$ directly. Notation: $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$.

Theorem (Gluesing-Luerssen, R.)

$$
\operatorname{Pr}(\mathscr{F} ; q)=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} q^{r m-\sum_{j=1}^{r} i_{j}} \prod_{j=1}^{r}\left(q^{c_{i j}-j+1}-1\right) .
$$

Proof is short.

q-Rook Polynomials

A different approach: compute $P_{r}(\mathscr{F} ; q)$ directly. Notation: $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$.

Theorem (Gluesing-Luerssen, R.)

$$
\operatorname{Pr}(\mathscr{F} ; q)=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} q^{r m-\sum_{j=1}^{r} i_{j}} \prod_{j=1}^{r}\left(q^{c_{i j}-j+1}-1\right) .
$$

Proof is short.

But inverting Haglund's theorem we also find a simple explicit formula for $R_{r}(\mathscr{F} ; q)$!
Corollary (Gluesing-Luerssen, R.)

$$
R_{r}(\mathscr{F} ; q)=\frac{q^{\sum_{j=1}^{m} c_{j}-r m} \sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} \prod_{j=1}^{r}\left(q^{i_{j}+j-c_{j}-1}-q^{i_{j}}\right)}{(1-q)^{r}} .
$$

q-Stirling Numbers

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$
S_{m+1, r}=q^{r-1} S_{m, r-1}+\frac{q^{r}-1}{q-1} S_{m, r}
$$

with initial conditions $S_{0,0}(q)=1$ and $S_{m, r}(q)=0$ for $r<0$ or $r>m$.

q-Stirling Numbers

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$
S_{m+1, r}=q^{r-1} S_{m, r-1}+\frac{q^{r}-1}{q-1} S_{m, r}
$$

with initial conditions $S_{0,0}(q)=1$ and $S_{m, r}(q)=0$ for $r<0$ or $r>m$.

Theorem (Garsia, Remmel)

$$
S_{m+1, m+1-r}=R_{r}(\mathscr{F} ; q)
$$

where $\mathscr{F}=[1, \ldots, m]$ is the upper-triangular $m \times m$ Ferrers board.

q-Stirling Numbers

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$
S_{m+1, r}=q^{r-1} S_{m, r-1}+\frac{q^{r}-1}{q-1} S_{m, r}
$$

with initial conditions $S_{0,0}(q)=1$ and $S_{m, r}(q)=0$ for $r<0$ or $r>m$.

Theorem (Garsia, Remmel)

$$
S_{m+1, m+1-r}=R_{r}(\mathscr{F} ; q)
$$

where $\mathscr{F}=[1, \ldots, m]$ is the upper-triangular $m \times m$ Ferrers board.
Theorem (Gluesing-Luerssen, R.)

$$
S_{m+1, m+1-r}=\frac{q^{\binom{m+1}{2}-r m} \sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} \prod_{j=1}^{r}\left(q^{j-1}-q^{i_{j}}\right)}{(1-q)^{r}} \quad \text { for } 1 \leq r \leq m+1
$$

q-Stirling Numbers

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$
S_{m+1, r}=q^{r-1} S_{m, r-1}+\frac{q^{r}-1}{q-1} S_{m, r}
$$

with initial conditions $S_{0,0}(q)=1$ and $S_{m, r}(q)=0$ for $r<0$ or $r>m$.

Theorem (Garsia, Remmel)

$$
S_{m+1, m+1-r}=R_{r}(\mathscr{F} ; q)
$$

where $\mathscr{F}=[1, \ldots, m]$ is the upper-triangular $m \times m$ Ferrers board.

Theorem (Gluesing-Luerssen, R.)

$$
S_{m+1, m+1-r}=\frac{q^{\binom{m+1}{2}-r m} \sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} \prod_{j=1}^{r}\left(q^{j-1}-q^{i_{j}}\right)}{(1-q)^{r}} \quad \text { for } 1 \leq r \leq m+1
$$

