The Covering Radius of Rank-Metric Codes

Alberto Ravagnani

- University College Dublin -

Algebraic Coding Theory for Networks, Storage, and Security Schloss Dagstuhl, Dec. 2018

A (rank-metric) code is a non-empty subset $\mathscr{C} \subseteq \mathbb{F}_{a}^{n \times m}$. We assume $n \leq m$ w.l.o.g.

The (rank) distance between matrices $M, N \in \mathbb{F}_q^{n \times m}$ is rk(M - N).

If $|\mathscr{C}|\geq 2,$ then the minimum distance of \mathscr{C} is

 $d(\mathscr{C}) := \min\{\mathsf{rk}(M-N) \mid M, N \in \mathscr{C}, M \neq N\}.$

A (rank-metric) code is a non-empty subset $\mathscr{C} \subseteq \mathbb{F}_{a}^{n \times m}$. We assume $n \leq m$ w.l.o.g.

The (rank) distance between matrices $M, N \in \mathbb{F}_q^{n \times m}$ is rk(M - N).

If $|\mathscr{C}| \geq 2$, then the **minimum distance** of \mathscr{C} is

$$d(\mathscr{C}) := \min\{ \mathsf{rk}(M - N) \mid M, N \in \mathscr{C}, M \neq N \}.$$

We say that $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is **linear** if it is an \mathbb{F}_q -subspace of $\mathbb{F}_q^{n \times m}$. In this case the **dual** of \mathscr{C} is the linear code

$$\mathscr{C}^{\perp} := \{ N \in \mathbb{F}_q^{n \times m} \mid \mathsf{Tr}(MN^t) = 0 \text{ for all } M \in \mathscr{C} \} \subseteq \mathbb{F}_q^{n \times m}$$

A (rank-metric) code is a non-empty subset $\mathscr{C} \subseteq \mathbb{F}_{a}^{n \times m}$. We assume $n \leq m$ w.l.o.g.

The (rank) distance between matrices $M, N \in \mathbb{F}_q^{n \times m}$ is rk(M - N).

If $|\mathscr{C}| \geq 2$, then the **minimum distance** of \mathscr{C} is

$$d(\mathscr{C}) := \min\{ \mathsf{rk}(M - N) \mid M, N \in \mathscr{C}, M \neq N \}.$$

We say that $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is **linear** if it is an \mathbb{F}_q -subspace of $\mathbb{F}_q^{n \times m}$. In this case the **dual** of \mathscr{C} is the linear code

$$\mathscr{C}^{\perp} := \{ N \in \mathbb{F}_{a}^{n \times m} \mid \mathsf{Tr}(MN^{t}) = 0 \text{ for all } M \in \mathscr{C} \} \subseteq \mathbb{F}_{a}^{n \times m}$$

- Introduced by Delsarte for combinatorial interest via association schemes.
- Introduced independently by Gabidulin and Roth.
- Re-discovered by Kötter-Kschischang-Silva and applied to linear network coding.

A (rank-metric) code is a non-empty subset $\mathscr{C} \subseteq \mathbb{F}_{a}^{n \times m}$. We assume $n \leq m$ w.l.o.g.

The (rank) distance between matrices $M, N \in \mathbb{F}_q^{n \times m}$ is rk(M - N).

If $|\mathscr{C}| \geq 2$, then the **minimum distance** of \mathscr{C} is

$$d(\mathscr{C}) := \min\{ \mathsf{rk}(M - N) \mid M, N \in \mathscr{C}, M \neq N \}.$$

We say that $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is **linear** if it is an \mathbb{F}_q -subspace of $\mathbb{F}_q^{n \times m}$. In this case the **dual** of \mathscr{C} is the linear code

$$\mathscr{C}^{\perp} := \{ N \in \mathbb{F}_{a}^{n \times m} \mid \operatorname{Tr}(MN^{t}) = 0 \text{ for all } M \in \mathscr{C} \} \subseteq \mathbb{F}_{a}^{n \times m}$$

- Introduced by Delsarte for combinatorial interest via association schemes.
- Introduced independently by Gabidulin and Roth.
- Re-discovered by Kötter-Kschischang-Silva and applied to linear network coding.

What is linear network coding?

Network coding: data transmission over networks.

Network coding: data transmission over networks.

• One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.

• The terminals demand all the messages (multicast).

Network coding: data transmission over networks.

• One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.

• The terminals demand all the messages (multicast).

What should the nodes do?

Network coding: data transmission over networks.

• One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.

• The terminals demand **all** the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).

Network coding: data transmission over networks.

terminals

- One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).

IDEA (Ahlswede-Cai-Li-Yeung 2000): allow the nodes to recombine packets.

This strategy is better than routing.

Error correction in networks

One adversary can change the value of up to t edges (t is the adversarial strength).

Natural approach: number of corrupted edges as a measure for the "disaster".

One adversary can change the value of up to t edges (t is the adversarial strength).

Natural approach: number of corrupted edges as a measure for the "disaster". Convenient approach: use rank-metric codes.

One adversary can change the value of up to t edges (t is the adversarial strength).

Natural approach: number of corrupted edges as a measure for the "disaster". Convenient approach: use rank-metric codes.

According to the rank metric, errors propage but do not amplify.

Covering Radius

Back to the mathematical theory of rank-metric codes...

Byrne, R., *Covering radius of matrix codes endowed with the rank metric.* SIAM J. Discrete Math.

Definition

The covering radius of a code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is the integer

 $\rho(\mathscr{C}) := \min\{i \in \mathbb{N} \mid \text{for all } X \in \mathbb{F}_{q}^{n \times m} \text{ there exists } M \in \mathscr{C} \text{ with } d(X, M) \leq i\}$

Covering Radius

Back to the mathematical theory of rank-metric codes...

Byrne, R., *Covering radius of matrix codes endowed with the rank metric.* SIAM J. Discrete Math.

Definition

The covering radius of a code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is the integer

 $\rho(\mathscr{C}) := \min\{i \in \mathbb{N} \mid \text{for all } X \in \mathbb{F}_{q}^{n \times m} \text{ there exists } M \in \mathscr{C} \text{ with } d(X, M) \leq i\}$

This the rank-analogue of the covering radius of a code $C \subseteq \mathbb{F}_q^n$ endowed with the Hamming metric.

Covering Radius

Back to the mathematical theory of rank-metric codes...

Byrne, R., *Covering radius of matrix codes endowed with the rank metric.* SIAM J. Discrete Math.

Definition

The covering radius of a code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is the integer

 $\rho(\mathscr{C}) := \min\{i \in \mathbb{N} \mid \text{for all } X \in \mathbb{F}_a^{n \times m} \text{ there exists } M \in \mathscr{C} \text{ with } d(X, M) \leq i\}$

This the rank-analogue of the covering radius of a code $C \subseteq \mathbb{F}_q^n$ endowed with the Hamming metric.

 $\rho(\mathscr{C})$ is the minimum value r such that the union of the spheres of radius r about the codeword cover the ambient space.

Covering radius of vector rank-metric codes (\mathbb{F}_{q^m} -linear) studied by Gadouleau-Yan: Gadouleau, Yan *Packing and Covering Properties of Rank Metric Codes*. IEEE Transactions Inf. Th.

Lemma

Let $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ be a code. The following hold.

- $0 \le \rho(\mathscr{C}) \le n$. Moreover, $\rho(\mathscr{C}) = 0$ if and only if $\mathscr{C} = \mathbb{F}_a^{n \times m}$.
- 2 If $\mathscr{D} \subseteq \mathbb{F}_q^{n \times m}$ is a code with $\mathscr{C} \subseteq \mathscr{D}$, then $\rho(\mathscr{C}) \ge \rho(\mathscr{D})$.
- If $\mathscr{D} \subseteq \mathbb{F}_q^{n \times m}$ is a code with $\mathscr{C} \subsetneq \mathscr{D}$, then $\rho(\mathscr{C}) \ge d(\mathscr{D})$.

Lemma

Let $\mathscr{C} \subseteq \mathbb{F}_{q}^{n \times m}$ be a code. The following hold.

- $0 \le \rho(\mathscr{C}) \le n$. Moreover, $\rho(\mathscr{C}) = 0$ if and only if $\mathscr{C} = \mathbb{F}_q^{n \times m}$.
- 2 If $\mathscr{D} \subseteq \mathbb{F}_{a}^{n \times m}$ is a code with $\mathscr{C} \subseteq \mathscr{D}$, then $\rho(\mathscr{C}) \geq \rho(\mathscr{D})$.
- If $\mathscr{D} \subseteq \mathbb{F}_q^{n \times m}$ is a code with $\mathscr{C} \subsetneq \mathscr{D}$, then $\rho(\mathscr{C}) \ge d(\mathscr{D})$.

A code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is maximal if $|\mathscr{C}| = 1$ or $|\mathscr{C}| \ge 2$ and there is no code $\mathscr{D} \subseteq \mathbb{F}_q^{n \times m}$ with $\mathscr{D} \supseteq \mathscr{C}$ and $d(\mathscr{D}) = d(\mathscr{C})$. In particular, $\mathbb{F}_q^{n \times m}$ is maximal.

Proposition

A code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ with $|\mathscr{C}| \ge 2$ is maximal if and only if $\rho(\mathscr{C}) \le d(\mathscr{C}) - 1$.

Maximality

We introduce a parameter that measures the maximality of a code.

Definition

The maximality degree of a code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ with $|\mathscr{C}| \ge 2$ is the integer defined by

$$\mu(\mathscr{C}) := \begin{cases} \min\{d(\mathscr{C}) - d(\mathscr{D}) \mid \mathscr{D} \subseteq \mathbb{F}_q^{n \times m} \text{ is a code with } \mathscr{D} \not\supseteq \mathscr{C}\} & \text{if } \mathscr{C} \subsetneq \mathbb{F}_q^{n \times m}, \\ 1 & \text{if } \mathscr{C} = \mathbb{F}_q^{n \times m}. \end{cases}$$

Maximality

We introduce a parameter that measures the maximality of a code.

Definition

The maximality degree of a code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ with $|\mathscr{C}| \ge 2$ is the integer defined by

$$\mu(\mathscr{C}) := \begin{cases} \min\{d(\mathscr{C}) - d(\mathscr{D}) \mid \mathscr{D} \subseteq \mathbb{F}_q^{n \times m} \text{ is a code with } \mathscr{D} \supseteq \mathscr{C}\} & \text{ if } \mathscr{C} \subseteq \mathbb{F}_q^{n \times m}, \\ 1 & \text{ if } \mathscr{C} = \mathbb{F}_q^{n \times m}. \end{cases}$$

Remarks:

- $\mu(\mathscr{C})$ is the "minimum price" (in terms of minimum distance) that one has to pay in order to enlarge \mathscr{C} to a bigger code,
- $0 \leq \mu(\mathscr{C}) \leq d(\mathscr{C}) 1$,
- $\mu(\mathscr{C}) > 0$ if and only if \mathscr{C} is maximal.

Maximality

We introduce a parameter that measures the maximality of a code.

Definition

The maximality degree of a code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ with $|\mathscr{C}| \ge 2$ is the integer defined by

$$\mu(\mathscr{C}) := \begin{cases} \min\{d(\mathscr{C}) - d(\mathscr{D}) \mid \mathscr{D} \subseteq \mathbb{F}_q^{n \times m} \text{ is a code with } \mathscr{D} \supseteq \mathscr{C}\} & \text{ if } \mathscr{C} \subseteq \mathbb{F}_q^{n \times m}, \\ 1 & \text{ if } \mathscr{C} = \mathbb{F}_q^{n \times m}. \end{cases}$$

Remarks:

- $\mu(\mathscr{C})$ is the "minimum price" (in terms of minimum distance) that one has to pay in order to enlarge \mathscr{C} to a bigger code,
- $0 \leq \mu(\mathscr{C}) \leq d(\mathscr{C}) 1$,
- $\mu(\mathscr{C}) > 0$ if and only if \mathscr{C} is maximal.

Proposition (Byrne-R.)

For any code $\mathscr{C} \subseteq \mathbb{F}_{q^{\times m}}^{q^{\times m}}$ with $|\mathscr{C}| \ge 2$ we have $\mu(\mathscr{C}) = d(\mathscr{C}) - \min\{\rho(\mathscr{C}), d(\mathscr{C})\}$. In particular, if \mathscr{C} is maximal then $\rho(\mathscr{C}) = d(\mathscr{C}) - \mu(\mathscr{C})$.

Translates of a code

For a code $\mathscr{C} \subseteq \mathbb{F}_{a}^{n \times m}$, let $W_{i}(\mathscr{C}) := |\{M \in \mathscr{C} \mid \mathsf{rk}(M) = i\}|.$

The **translate** of a code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ by a matrix $X \in \mathbb{F}_q^{n \times m}$ is the code

$$\mathscr{C} + X := \{M + X : M \in \mathscr{C}\} \subseteq \mathbb{F}_q^{n \times m}$$

Remark

Full knowledge of the weight distribution of the translates of $\ensuremath{\mathscr{C}}$ tells us the covering radius, as

$$\rho(\mathscr{C}) = \max_{X \in \mathbb{F}_a^{n \times m}} \min_{N \in \mathscr{C} + X} \operatorname{rk}(N).$$

Even partial information may yield a bound on the covering radius.

Translates of a code

For a code $\mathscr{C} \subseteq \mathbb{F}_{a}^{n \times m}$, let $W_{i}(\mathscr{C}) := |\{M \in \mathscr{C} \mid \mathsf{rk}(M) = i\}|.$

The **translate** of a code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ by a matrix $X \in \mathbb{F}_q^{n \times m}$ is the code

$$\mathscr{C} + X := \{M + X : M \in \mathscr{C}\} \subseteq \mathbb{F}_q^{n \times m}$$

Remark

Full knowledge of the weight distribution of the translates of $\ensuremath{\mathscr{C}}$ tells us the covering radius, as

$$\rho(\mathscr{C}) = \max_{X \in \mathbb{F}_q^{n imes m}} \min_{N \in \mathscr{C} + X} \operatorname{rk}(N).$$

Even partial information may yield a bound on the covering radius.

We now express the weight distribution

$$W_0(\mathcal{C}+X),...,W_n(\mathcal{C}+X)$$

of the translate $\mathscr{C} + X$ of a linear code $\mathscr{C} \subsetneq \mathbb{F}_{a}^{k \times n}$ in terms of

$$W_0(\mathscr{C}+X),...,W_{n-d^{\perp}}(\mathscr{C}+X),$$
 where $d^{\perp}=d(\mathscr{C}^{\perp}).$

As an application, we obtain an upper bound on the covering radius of a linear code.

Weight distribution of translates.

Theorem (Byrne-R.)

Let $\mathscr{C} \subsetneq \mathbb{F}_q^{n \times m}$ be a linear code, and let $X \in \mathbb{F}_q^{n \times m}$. Write $d^{\perp} := d(\mathscr{C}^{\perp})$. Then for all $i \in \{n - d^{\perp} + 1, ..., n\}$ we have

$$W_{i}(\mathscr{C}+X) = \sum_{u=0}^{n-d^{\perp}} (-1)^{i-u} q^{\binom{i-u}{2}} \begin{bmatrix} n-u\\ i-u \end{bmatrix}_{q} \sum_{j=0}^{u} W_{j}(\mathscr{C}+X) \begin{bmatrix} n-j\\ u-j \end{bmatrix}_{q} + \sum_{u=n-d^{\perp}+1}^{i} \begin{bmatrix} n\\ u \end{bmatrix}_{q} \frac{|\mathscr{C}|}{q^{m(k-u)}}.$$

In particular, the distance distribution of the translate $\mathscr{C} + X$ is completely determined by $n, m, |\mathscr{C}|$ and the weights $W_0(\mathscr{C} + X), ..., W_{n-d^{\perp}}(\mathscr{C} + X)$.

Weight distribution of translates.

Theorem (Byrne-R.)

Let $\mathscr{C} \subsetneq \mathbb{F}_q^{n \times m}$ be a linear code, and let $X \in \mathbb{F}_q^{n \times m}$. Write $d^{\perp} := d(\mathscr{C}^{\perp})$. Then for all $i \in \{n - d^{\perp} + 1, ..., n\}$ we have

$$W_{i}(\mathscr{C}+X) = \sum_{u=0}^{n-d^{\perp}} (-1)^{i-u} q^{\binom{i-u}{2}} \begin{bmatrix} n-u\\ i-u \end{bmatrix}_{q} \sum_{j=0}^{u} W_{j}(\mathscr{C}+X) \begin{bmatrix} n-j\\ u-j \end{bmatrix}_{q} + \sum_{u=n-d^{\perp}+1}^{i} \begin{bmatrix} n\\ u \end{bmatrix}_{q} \frac{|\mathscr{C}|}{q^{m(k-u)}}.$$

In particular, the distance distribution of the translate $\mathscr{C} + X$ is completely determined by $n, m, |\mathscr{C}|$ and the weights $W_0(\mathscr{C} + X), ..., W_{n-d^{\perp}}(\mathscr{C} + X)$.

Let $X \in \mathbb{F}_q^{n \times m} \notin \mathscr{C}$ be arbitrary. Then $W_0(\mathscr{C} + X) = 0$.

Apply the Theorem with $i := n - d^{\perp} + 1$ and obtain:

For $X \in \mathbb{F}_q^{n imes m} \notin \mathscr{C}$ arbitrary:

$$W_{n+d^{\perp}+1}(\mathscr{C}+X) = \sum_{u=1}^{n-d^{\perp}} (-1)^{i-u} q^{\binom{i-u}{2}} \begin{bmatrix} n-u\\ i-u \end{bmatrix}_q \sum_{q=1}^{u} W_j(\mathscr{C}+X) \begin{bmatrix} n-j\\ u-j \end{bmatrix}_q + \begin{bmatrix} n\\ n-d^{\perp}+1 \end{bmatrix}_q |\mathscr{C}|/q^{m(d^{\perp}-1)}.$$

For $X \in \mathbb{F}_q^{n \times m} \notin \mathscr{C}$ arbitrary:

$$W_{n+d^{\perp}+1}(\mathscr{C}+X) = \sum_{u=1}^{n-d^{\perp}} (-1)^{i-u} q^{\binom{i-u}{2}} \begin{bmatrix} n-u\\ i-u \end{bmatrix}_q \sum_{j=1}^u W_j(\mathscr{C}+X) \begin{bmatrix} n-j\\ u-j \end{bmatrix}_q + \begin{bmatrix} n\\ n-d^{\perp}+1 \end{bmatrix}_q |\mathscr{C}|/q^{m(d^{\perp}-1)}.$$

In particular, $W_1(\mathscr{C}+X),...,W_{n-d^{\perp}+1}(\mathscr{C}+X)$ cannot be all zero!

Since X was arbitrary, this implies the following.

Corollary (dual distance bound, Byrne-R.)

For any linear code $\mathscr{C} \subsetneq \mathbb{F}_q^{n \times m}$ we have $\rho(\mathscr{C}) \le n - d(\mathscr{C}^{\perp}) + 1$.

We have other bounds for linear / non-linear codes.

Initial sets

Let $a, b \in \mathbb{Z}_{>0}$ and $S \subseteq \{1, ..., a\} \times \{1, ..., b\}$. The characteristic matrix $\mathbb{I}(S) \in \mathbb{F}_2^{a \times b}$ of S is defined by

$$\mathbb{I}(S)_{ij} := \begin{cases} 1 & \text{if } (i,j) \in S, \\ 0 & \text{if } (i,j) \notin S \end{cases}$$

Initial sets

Let $a, b \in \mathbb{Z}_{>0}$ and $S \subseteq \{1, ..., a\} \times \{1, ..., b\}$. The characteristic matrix $\mathbb{I}(S) \in \mathbb{F}_2^{a \times b}$ of S is defined by

$$\mathbb{I}(S)_{ij} := \begin{cases} 1 & \text{if } (i,j) \in S, \\ 0 & \text{if } (i,j) \notin S \end{cases}$$

Moreover, we denote by $\lambda(S)$ the minimum number of lines (rows or columns) required to cover all the ones in $\mathbb{I}(S)$.

Example

Let
$$a = 2$$
, $b = 3$ and $S = \{(1,1), (1,2), (2,2), (2,3)\}$. Then

$$\mathbb{I}(S) := egin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix} \in \mathbb{F}_2^{2 imes 3} \qquad ext{ and } \quad \lambda(S) = 2.$$

Initial sets

Let $a, b \in \mathbb{Z}_{>0}$ and $S \subseteq \{1, ..., a\} \times \{1, ..., b\}$. The characteristic matrix $\mathbb{I}(S) \in \mathbb{F}_2^{a \times b}$ of S is defined by

$$\mathbb{I}(S)_{ij} := \begin{cases} 1 & \text{if } (i,j) \in S, \\ 0 & \text{if } (i,j) \notin S \end{cases}$$

Moreover, we denote by $\lambda(S)$ the minimum number of lines (rows or columns) required to cover all the ones in $\mathbb{I}(S)$.

Example

Let
$$a = 2, b = 3$$
 and $S = \{(1,1), (1,2), (2,2), (2,3)\}$. Then
$$\mathbb{I}(S) := \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \in \mathbb{F}_2^{2 \times 3} \quad \text{and} \quad \lambda(S) = 2.$$

The initial entry of a matrix $M \in \mathbb{F}_q^{n \times m}$, $M \neq 0$, is

 $\mathsf{in}(M) := \mathsf{min}\{(i,j) \in \{1,...,n\} \times \{1,...,m\} \mid M_{ij} \neq 0\} \qquad \mathsf{lexicographically}.$

Example

Let
$$M := \begin{bmatrix} 0 & 0 & 4 & 2 & 0 \\ 1 & 0 & 3 & 2 & 1 \end{bmatrix} \in \mathbb{F}_5^{2 \times 5}$$
Then in(*M*) = (1,3).

Example

Let

$$M := \begin{bmatrix} 0 & 0 & 4 & 2 & 0 \\ 1 & 0 & 3 & 2 & 1 \end{bmatrix} \in \mathbb{F}_5^{2 \times 5}$$

Then in(M) = (1,3).

Definition

The **initial set** of a non-zero linear code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is

 $\mathsf{in}(\mathscr{C}) := \{\mathsf{in}(M) \mid M \in \mathscr{C}, \ M \neq 0\} \subseteq \{1, ..., n\} \times \{1, ..., m\}.$

Example

Let

$$M := \begin{bmatrix} 0 & 0 & 4 & 2 & 0 \\ 1 & 0 & 3 & 2 & 1 \end{bmatrix} \in \mathbb{F}_5^{2 \times 5}$$

Then in(M) = (1,3).

Definition

The **initial set** of a non-zero linear code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is

$$\mathsf{in}(\mathscr{C}) := \{\mathsf{in}(M) \mid M \in \mathscr{C}, \ M \neq 0\} \subseteq \{1, ..., n\} \times \{1, ..., m\}.$$

First properties of the initial set.

Remark

Let $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ be a non-zero linear code. Then

 $\dim(\mathscr{C}) = |in(\mathscr{C})|.$

 $\begin{array}{l} \text{Let } \{0\} \neq \mathscr{C} \subseteq \mathbb{F}_q^{n \times m} \text{ be a linear code.} \quad \text{Let } S := \{1,...,n-d(\mathscr{C})+1\} \times \{1,...,m\} \setminus \text{in}(\mathscr{C}). \end{array}$

 $\rho(\mathscr{C}) \leq d(\mathscr{C}) - 1 + \lambda(S).$

Let $\{0\} \neq \mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ be a linear code. Let $S := \{1, ..., n - d(\mathscr{C}) + 1\} \times \{1, ..., m\} \setminus in(\mathscr{C})$. Then

$$ho(\mathscr{C}) \leq d(\mathscr{C}) - 1 + \lambda(S).$$

Example

Let q = 2 and n = m = 3. Let \mathscr{C} be the linear code generated by $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$ We have $d(\mathscr{C}) = 2$ and $in(\mathscr{C}) = \{(1,1), (1,2), (2,1), (2,2)\}.$

 $\begin{array}{l} \text{Let } \{0\} \neq \mathscr{C} \subseteq \mathbb{F}_q^{n \times m} \text{ be a linear code.} \quad \text{Let } S := \{1,...,n-d(\mathscr{C})+1\} \times \{1,...,m\} \setminus \text{in}(\mathscr{C}). \end{array}$

$$ho(\mathscr{C}) \leq d(\mathscr{C}) - 1 + \lambda(S).$$

Example

Let q = 2 and n = m = 3. Let \mathscr{C} be the linear code generated by $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$ We have $d(\mathscr{C}) = 2$ and $in(\mathscr{C}) = \{(1,1), (1,2), (2,1), (2,2)\}$. Therefore $S = \{1, ..., 2\} \times \{1, ..., 3\} \setminus in(\mathscr{C}) = \{(1,3), (2,3)\}, \quad \mathbb{I}(S) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

 $\begin{array}{l} \text{Let } \{0\} \neq \mathscr{C} \subseteq \mathbb{F}_q^{n \times m} \text{ be a linear code.} \quad \text{Let } S := \{1,...,n-d(\mathscr{C})+1\} \times \{1,...,m\} \setminus \text{in}(\mathscr{C}). \end{array}$

$$ho(\mathscr{C}) \leq d(\mathscr{C}) - 1 + \lambda(S).$$

Example

Let q = 2 and n = m = 3. Let \mathscr{C} be the linear code generated by $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$ We have $d(\mathscr{C}) = 2$ and $in(\mathscr{C}) = \{(1,1), (1,2), (2,1), (2,2)\}$. Therefore $S = \{1, ..., 2\} \times \{1, ..., 3\} \setminus in(\mathscr{C}) = \{(1,3), (2,3)\}, \quad \mathbb{I}(S) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ So $\lambda(S) = 1$ and (by the Theorem) $\rho(\mathscr{C}) \le d(\mathscr{C}) - 1 + \lambda(S) = 2$.

The other bounds give $\rho(\mathscr{C}) \leq 3$.

Other results

If $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is a linear code of dimension k and $m \gg 0$, then we can say what the "expected" covering radius of \mathscr{C} is for $q \to +\infty$.

If $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is a linear code of dimension k and $m \gg 0$, then we can say what the "expected" covering radius of \mathscr{C} is for $q \to +\infty$.

Theorem (Byrne-R.)

Let $0 \le k \le nm$ be an integer. Denote by \mathscr{F} the family of linear codes $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ of dimension k. Let $\mathscr{F}' := \{\mathscr{C} \in \mathscr{F} \mid \rho(\mathscr{C}) = n - \lfloor k/m \rfloor\}$. Then

 $\lim_{q \to +\infty} \frac{|\mathscr{F}'|}{|\mathscr{F}|} = 1 \qquad \text{whenever} \qquad k < (m - n + \lfloor k/m \rfloor + 1)(\lfloor k/m \rfloor + 1).$

If $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ is a linear code of dimension k and $m \gg 0$, then we can say what the "expected" covering radius of \mathscr{C} is for $q \to +\infty$.

Theorem (Byrne-R.)

Let $0 \le k \le nm$ be an integer. Denote by \mathscr{F} the family of linear codes $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$ of dimension k. Let $\mathscr{F}' := \{\mathscr{C} \in \mathscr{F} \mid \rho(\mathscr{C}) = n - \lfloor k/m \rfloor\}$. Then

 $\lim_{q \to +\infty} \frac{|\mathscr{F}'|}{|\mathscr{F}|} = 1 \qquad \text{whenever} \qquad k < (m - n + \lfloor k/m \rfloor + 1)(\lfloor k/m \rfloor + 1).$

Thank you!