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Rank-metric codes

Definition

A (rank-metric) code is a non-empty subset C ⊆ Fn×mq . We assume n ≤m w.l.o.g.

The (rank) distance between matrices M,N ∈ Fn×m
q is rk(M−N).

If |C | ≥ 2, then the minimum distance of C is

d(C ) := min{rk(M−N) |M,N ∈ C ,M 6= N}.

We say that C ⊆ Fn×mq is linear if it is an Fq-subspace of Fn×m
q . In this case the dual of

C is the linear code

C⊥ := {N ∈ Fn×m
q | Tr(MNt) = 0 for all M ∈ C } ⊆ Fn×mq .

Introduced by Delsarte for combinatorial interest via association schemes.

Introduced independently by Gabidulin and Roth.

Re-discovered by Kötter-Kschischang-Silva and applied to linear network coding.

What is linear network coding?
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What is network coding about?

Network coding: data transmission over networks.

SFmq 3 v1, ...,vn

T1

T2

TM

terminals

One source S attempts to transmit messages v1, ...,vn ∈ Fm
q .

The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).

IDEA (Ahlswede-Cai-Li-Yeung 2000): allow the nodes to recombine packets.
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Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).

S

T1

T2

×××
×××

×××
×××
×××

×××
×××

⊗⊗⊗
ERROR AMPLIFICATION

Natural approach: number of corrupted edges as a measure for the “disaster”.

Convenient approach: use rank-metric codes.

According to the rank metric, errors propage but do not amplify.
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Covering Radius

Back to the mathematical theory of rank-metric codes...

Byrne, R., Covering radius of matrix codes endowed with the rank metric.
SIAM J. Discrete Math.

Definition

The covering radius of a code C ⊆ Fn×mq is the integer

ρ(C ) := min{i ∈ N | for all X ∈ Fn×m
q there exists M ∈ C with d(X ,M)≤ i}

This the rank-analogue of the covering radius of a code C ⊆ Fnq endowed with the
Hamming metric.

ρ(C ) is the minimum value r such that the union of the spheres of radius r about the
codeword cover the ambient space.

Covering radius of vector rank-metric codes (Fqm -linear) studied by Gadouleau-Yan:

Gadouleau, Yan Packing and Covering Properties of Rank Metric Codes.
IEEE Transactions Inf. Th.
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First properties of the covering radius

Lemma

Let C ⊆ Fn×m
q be a code. The following hold.

1 0≤ ρ(C )≤ n. Moreover, ρ(C ) = 0 if and only if C = Fn×m
q .

2 If D ⊆ Fn×mq is a code with C ⊆D , then ρ(C )≥ ρ(D).

3 If D ⊆ Fn×mq is a code with C ( D , then ρ(C )≥ d(D).

A code C ⊆ Fn×mq is maximal if |C |= 1 or |C | ≥ 2 and there is no code D ⊆ Fn×mq with
D ! C and d(D) = d(C ). In particular, Fn×m

q is maximal.

Proposition

A code C ⊆ Fn×mq with |C | ≥ 2 is maximal if and only if ρ(C )≤ d(C )−1.
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Maximality

We introduce a parameter that measures the maximality of a code.

Definition

The maximality degree of a code C ⊆ Fn×m
q with |C | ≥ 2 is the integer defined by

µ(C ) :=

{
min{d(C )−d(D) | D ⊆ Fn×mq is a code with D ! C } if C ( Fn×m

q ,

1 if C = Fn×m
q .

Remarks:

µ(C ) is the “minimum price” (in terms of minimum distance) that one has to pay in
order to enlarge C to a bigger code,

0≤ µ(C )≤ d(C )−1,

µ(C ) > 0 if and only if C is maximal.

Proposition (Byrne-R.)

For any code C ⊆ Fn×m
q with |C | ≥ 2 we have µ(C ) = d(C )−min{ρ(C ), d(C )}.

In particular, if C is maximal then ρ(C ) = d(C )−µ(C ).
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Translates of a code

For a code C ⊆ Fn×mq , let Wi (C ) := |{M ∈ C | rk(M) = i}|.

The translate of a code C ⊆ Fn×mq by a matrix X ∈ Fn×m
q is the code

C +X := {M +X : M ∈ C } ⊆ Fn×mq .

Remark

Full knowledge of the weight distribution of the translates of C tells us the covering
radius, as

ρ(C ) = max
X∈Fn×m

q

min
N∈C+X

rk(N).

Even partial information may yield a bound on the covering radius.

We now express the weight distribution

W0(C +X ), ...,Wn(C +X )

of the translate C +X of a linear code C ( Fk×n
q in terms of

W0(C +X ), ...,Wn−d⊥(C +X ), where d⊥ = d(C⊥).

As an application, we obtain an upper bound on the covering radius of a linear code.
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Translates of a code

Weight distribution of translates.

Theorem (Byrne-R.)

Let C ( Fn×m
q be a linear code, and let X ∈ Fn×mq . Write d⊥ := d(C⊥).

Then for all i ∈ {n−d⊥+ 1, ...,n} we have

Wi (C +X ) =
n−d⊥

∑
u=0

(−1)i−uq(i−u2 )

[
n−u

i −u

]
q

u

∑
j=0

Wj (C +X )

[
n− j

u− j

]
q

+

+
i

∑
u=n−d⊥+1

[
n

u

]
q

|C |
qm(k−u) .

In particular, the distance distribution of the translate C +X is completely determined by
n, m, |C | and the weights W0(C +X ), ...,Wn−d⊥(C +X ).

Let X ∈ Fn×mq /∈ C be arbitrary. Then W0(C +X ) = 0.

Apply the Theorem with i := n−d⊥+ 1 and obtain:
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Translates of a code and dual distance bound

For X ∈ Fn×m
q /∈ C arbitrary:

Wn+d⊥+1(C +X ) =
n−d⊥

∑
u=1

(−1)i−uq(i−u2 )

[
n−u

i −u

]
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∑
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n

n−d⊥+ 1

]
q

|C |/qm(d⊥−1).

In particular, W1(C +X ), ...,Wn−d⊥+1(C +X ) cannot be all zero!

Since X was arbitrary, this implies the following.

Corollary (dual distance bound, Byrne-R.)

For any linear code C ( Fn×m
q we have ρ(C )≤ n−d(C⊥) + 1.

We have other bounds for linear / non-linear codes.
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Initial sets

Let a,b ∈ Z>0 and S ⊆ {1, ...,a}×{1, ...,b}. The characteristic matrix I(S) ∈ Fa×b2 of S
is defined by

I(S)ij :=

{
1 if (i , j) ∈ S ,

0 if (i , j) /∈ S

Moreover, we denote by λ (S) the minimum number of lines (rows or columns) required
to cover all the ones in I(S).

Example

Let a = 2, b = 3 and S = {(1,1),(1,2),(2,2),(2,3)}. Then

I(S) :=

[
1 1 0

0 1 1

]
∈ F2×32 and λ (S) = 2.

The initial entry of a matrix M ∈ Fn×mq , M 6= 0, is

in(M) := min{(i , j) ∈ {1, ...,n}×{1, ...,m} |Mij 6= 0} lexicographically.
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is defined by

I(S)ij :=

{
1 if (i , j) ∈ S ,

0 if (i , j) /∈ S

Moreover, we denote by λ (S) the minimum number of lines (rows or columns) required
to cover all the ones in I(S).

Example

Let a = 2, b = 3 and S = {(1,1),(1,2),(2,2),(2,3)}. Then
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[
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Initial sets

Example

Let

M :=

[
0 0 4 2 0

1 0 3 2 1

]
∈ F2×55

Then in(M) = (1,3).

Definition

The initial set of a non-zero linear code C ⊆ Fn×m
q is

in(C ) := {in(M) |M ∈ C , M 6= 0} ⊆ {1, ...,n}×{1, ...,m}.

First properties of the initial set.

Remark

Let C ⊆ Fn×m
q be a non-zero linear code. Then

dim(C ) = |in(C )|.



Initial sets

Example

Let

M :=

[
0 0 4 2 0

1 0 3 2 1

]
∈ F2×55

Then in(M) = (1,3).

Definition

The initial set of a non-zero linear code C ⊆ Fn×m
q is

in(C ) := {in(M) |M ∈ C , M 6= 0} ⊆ {1, ...,n}×{1, ...,m}.

First properties of the initial set.

Remark

Let C ⊆ Fn×m
q be a non-zero linear code. Then

dim(C ) = |in(C )|.



Initial sets

Example

Let

M :=

[
0 0 4 2 0

1 0 3 2 1

]
∈ F2×55

Then in(M) = (1,3).

Definition

The initial set of a non-zero linear code C ⊆ Fn×m
q is

in(C ) := {in(M) |M ∈ C , M 6= 0} ⊆ {1, ...,n}×{1, ...,m}.

First properties of the initial set.

Remark

Let C ⊆ Fn×m
q be a non-zero linear code. Then

dim(C ) = |in(C )|.



Initial set bound

Theorem (initial set bound, Byrne-R.)

Let {0} 6= C ⊆ Fn×m
q be a linear code. Let S := {1, ...,n−d(C ) + 1}×{1, ...,m}\ in(C ).

Then
ρ(C )≤ d(C )−1 + λ (S).

Example

Let q = 2 and n = m = 3. Let C be the linear code generated by1 0 0

0 0 1

0 0 0

 ,

0 1 0

0 0 0

1 0 0

 ,

0 0 0

1 0 0

0 1 0

 ,

0 0 0

0 1 1

1 0 0

 .

We have d(C ) = 2 and in(C ) = {(1,1),(1,2),(2,1),(2,2)}. Therefore

S = {1, ...,2}×{1, ...,3}\ in(C ) = {(1,3),(2,3)}, I(S) =

[
0 0 1

0 0 1

]
So λ (S) = 1 and (by the Theorem) ρ(C )≤ d(C )−1 + λ (S) = 2.

The other bounds give ρ(C )≤ 3.
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Other results

If C ⊆ Fn×m
q is a linear code of dimension k and m� 0, then we can say what the

“expected” covering radius of C is for q→+∞.

Theorem (Byrne-R.)

Let 0≤ k ≤ nm be an integer. Denote by F the family of linear codes C ⊆ Fn×m
q of

dimension k. Let F ′ := {C ∈F | ρ(C ) = n−bk/mc}. Then

lim
q→+∞

|F ′|
|F |

= 1 whenever k < (m−n+ bk/mc+ 1)(bk/mc+ 1).

Thank you!
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