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A (rank-metric) code is a non-empty subset ¢ C IE‘ZX"'. We assume n<m w.l.o.g.
The (rank) distance between matrices M, N € Fg*" is rk(M — N).
If || > 2, then the minimum distance of ¢ is

d(€) := min{rk(M — N) | M,N € €, M # N}.
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Fg' 2 vi,.yvp terminals

@ One source S attempts to transmit messages vi,...,v, € Fg".

@ The terminals demand all the messages (multicast).

What should the nodes do?

Maximize the messages that are transmitted to all terminals per channel use (rate).



What is network coding about?

Network coding: data transmission over networks.

Q
) 929 ?
. @ 99 °
b . Y 9
% a 2’ i 433.» S
m SIS )
)
Fg' o vi,.svp - aj"-)a »lo e
@
& JJ Q=59 9 )
e s il ° v
9 > b 4 o
Q 9 ] ]
s Y
o b I+

@ One source S attempts to transmit messages vi,...,v, € Fg".

@ The terminals demand all the messages (multicast).

What should the nodes do?

terminals

Maximize the messages that are transmitted to all terminals per channel use (rate).

IDEA (Ahlswede-Cai-Li-Yeung 2000): allow the nodes to recombine packets.
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This strategy is better than routing.
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Natural approach: number of corrupted edges as a measure for the “disaster”.

Convenient approach: use rank-metric codes.



Error correction in networks

One adversary can change the value of up to t edges (t is the adversarial strength).
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Natural approach: number of corrupted edges as a measure for the “disaster”.

Convenient approach: use rank-metric codes.

According to the rank metric, errors propage but do not amplify.



Back to the mathematical theory of rank-metric codes...
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Covering Radius

Back to the mathematical theory of rank-metric codes...

Byrne, R., Covering radius of matrix codes endowed with the rank metric.
SIAM J. Discrete Math.

Definition

The covering radius of a code ¢ CFg*™ is the integer

p(%) :=min{i € N|for all X € Fg*™ there exists M € € with d(X,M) <}

This the rank-analogue of the covering radius of a code C C Fg endowed with the
Hamming metric.

p(%) is the minimum value r such that the union of the spheres of radius r about the
codeword cover the ambient space.

Covering radius of vector rank-metric codes (Fgm-linear) studied by Gadouleau-Yan:

Gadouleau, Yan Packing and Covering Properties of Rank Metric Codes.
IEEE Transactions Inf. Th.



Let ¥ CF2*™ be a code. The following hold.
q

@ 0<p(%) < n. Moreover, p(¢’) =0 if and only if ¢ =Fg*™.
Q If 2 CFg*™ is a code with € C 2, then p(%) > p(2).
Q If 2 CFg*™ is a code with ¢ C 9, then p(%) > d(2).



Let € C IFZX’" be a code. The following hold.

@ 0<p(%) < n. Moreover, p(¢’) =0 if and only if ¢ =Fg*™.
Q If 2 CTFg*™ is a code with ¢ C 9, then p(%) > p(2).
Q If 2 CFg*™ is a code with ¢ C 9, then p(%) > d(2).

A code ¥ CTFg*™ is maximal if || = 1 or |€'| > 2 and there is no code 2 CFg*™ with
2 2 %€ and d(2) =d(%). In particular, Fg*™ is maximal.

A code ¥ CTFg*™ with |%'| > 2 is maximal if and only if p(%") < d(%)—1.



We introduce a parameter that measures the maximality of a code.

The maximality degree of a code ¥ C Fg*™ with || > 2 is the integer defined by

min{d(¢)—d(2) | 2 CFg*™ is a code with 2 2 €} if € CFg ",
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Maximality

We introduce a parameter that measures the maximality of a code.

Definition
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Remarks:

@ (%) is the “minimum price” (in terms of minimum distance) that one has to pay in
order to enlarge % to a bigger code,

0 0< u(%)<d(?)-1,

o (%) >0 if and only if € is maximal.



Maximality

We introduce a parameter that measures the maximality of a code.

Definition

The maximality degree of a code ¥ C Fg*'™ with |¢| > 2 is the integer defined by

(€)= min{d(¢)—d(2) | 2 CFy*™is a code with 7 2 ¢} if € CFg*™,
= 1 if ¢ = F7<m.

Remarks:

@ (%) is the “minimum price” (in terms of minimum distance) that one has to pay in
order to enlarge % to a bigger code,

0 0<u(¥)<d(%)-1,
o (%) >0 if and only if € is maximal.
Proposition (Byrne-R.)

For any code ¢ CFg*™ with |€'| > 2 we have u(%) = d(¢) —min{p (%), d(¢)}.
In particular, if ¢ is maximal then p(%) = d(¢) — u(%).



Translates of a code

For a code € CTFg*™, let Wi(%):=[{M €€ | rk(M) = i}|.

The translate of a code ¥ C ngm by a matrix X € ngm is the code

C+X:={M+X: MG‘K}QFgX’".

Full knowledge of the weight distribution of the translates of % tells us the covering
radius, as
%)= max min  rk(N).
p(#) XeFi<m  Ne%-+X (M)

Even partial information may yield a bound on the covering radius.
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For a code € CTFg*™, let Wi(%):=[{M €€ | rk(M) = i}|.

The translate of a code ¥ C ngm by a matrix X € ngm is the code

C+X:={M+X: MECK}QFQX"’.

Full knowledge of the weight distribution of the translates of % tells us the covering

radius, as

%)= max min  rk(N).
p(#) XeFm  NEE+X (M)

Even partial information may yield a bound on the covering radius.
We now express the weight distribution
Wo(€ + X),..., Wp(€ + X)
of the translate ¥ + X of a linear code € C IFSX” in terms of
Wo(€+X),... W, 4 (€+X),  where dt =d(€").

As an application, we obtain an upper bound on the covering radius of a linear code.



Translates of a code

Weight distribution of translates.
Theorem (Byrne-R.)

Let ¥ C Fg*™ be a linear code, and let X € Fg*™.  Write d*- := d(%).
Then for all i € {n—d*+1,...,n} we have
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In particular, the distance distribution of the translate ¥ + X is completely determined by
n, m, |€| and the weights Wo (% + X), ..., W,_4.(¢ + X).



Translates of a code

Weight distribution of translates.
Theorem (Byrne-R.)

Let ¥ C Fg*™ be a linear code, and let X € Fg*™.  Write d*- := d(%).
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In particular, the distance distribution of the translate ¥ + X is completely determined by
n, m, |€| and the weights Wo (% + X), ..., W,_4.(¢ + X).

Let X € Fg*™ ¢ € be arbitrary. Then Wp(%¢' +X) =0.

Apply the Theorem with i:=n—d*-+1 and obtain:



For X e Fg*™ ¢ € arbitrary:
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For X e Fg*™ ¢ € arbitrary:

+
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In particular, W1(%€ + X),..., W,_4:,1(€ + X) cannot be all zero!

Since X was arbitrary, this implies the following.

For any linear code ¢ C Fg*™ we have p(¢) < n— d(€+)+1.

We have other bounds for linear / non-linear codes.



Let a,b€Z~g and S C{1,...,a} x{1,...,b}. The characteristic matrix I(S) € IFSXb of S
is defined by

1 if(ij)€eSs,

1(S)i ::{ 0 if(ij)¢S



Initial sets

Let a,b€Z~g and S C{1,...,a} x{1,...,b}. The characteristic matrix I(S) € IE‘gXb of S
is defined by
1 if(ij)es,
sy =4 b 10D
0 if(i,j)¢S

Moreover, we denote by A(S) the minimum number of lines (rows or columns) required
to cover all the ones in I(S).

Let a=2, b=3 and S={(1,1),(1,2),(2,2),(2,3)}. Then
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I(S) = cF2x3 and  A(S)=2.
(S) [o 1 1] 5 n (S)



Initial sets

Let a,b€Z~g and S C{1,...,a} x {1,...,b}. The characteristic matrix I(S) € IE‘;Xb of S
is defined by
1 if(ij)es,
sy =4 b 10D
0 if(i,j)¢S

Moreover, we denote by A(S) the minimum number of lines (rows or columns) required
to cover all the ones in I(S).

Let a=2, b=3 and S={(1,1),(1,2),(2,2),(2,3)}. Then

110
I(S):= cF2x3 and A(S)=2.
(S) [o ) 1] 5 n ($)

The initial entry of a matrix M € Fg*™, M #0, is

in(M) :==min{(i,j) € {1,...,n} x {1,...,m} | Mj; #0} lexicographically.



Let
4
M;:OO 206]F§X5
1 0 3 2 1

Then in(M) = (1,3).



Let

M= 042 0] g
103 21

Then in(M) = (1,3).

The initial set of a non-zero linear code ¢ C ng”' is

in(¢):={in(M) | Me€, M#£0} C{1,..,n}x{1,..,m}.



Let

4 2
M= 0 Ol ep2s
1 0 3 2 1

Then in(M) = (1,3).

The initial set of a non-zero linear code ¢ C ng”' is
in(¢):={in(M) | Me€, M#£0} C{1,..,n}x{1,..,m}.

First properties of the initial set.

Let ¥ C IFZX"’ be a non-zero linear code. Then

dim(%) = [in(%)|.



Let {0} #% CFg*™ be a linear code. Let S:={1,...,n—d(%)+1} x {1,....m}\in(%).
Then
p(€) <d(€)—1+A(S).



Initial set bound

Theorem (initial set bound, Byrne-R.)
Let {0} # % CFg*™ be a linear code. Let S:={1,....,n—d(%)+1} x{1,...,m}\in(%).

Then
p(€) <d(€)—1+A(S).

Let g=2and n=m=3. Let ¥ be the linear code generated by

1 0 O 0 1 0 0 0 O 0 0 O
0 0 1|, 0 0 O0f, 1 0 Of, 0o 1 1§.
0 0 O 1 0 O 0 1 0 1 0 O

We have d(%) =2 and in(¢)=1{(1,1),(1,2),(2,1),(2,2)}.
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Theorem (initial set bound, Byrne-R.)
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S={1,.,2} x {1,...,3}\in(%) = {(1,3),(2,3)}, H<5>=[2 g j



Initial set bound

Theorem (initial set bound, Byrne-R.)
Let {0} # % CFg*™ be a linear code. Let S:={1,....,n—d(%)+1} x{1,...,m}\in(%).

Then
p(€) <d(€)—1+A(S).

Let g=2and n=m=3. Let ¥ be the linear code generated by

1 0 O 0 1 0 0 0 O 0 0 O
0 0 1}, 0 0 0, 1 0 O0f, 0 1 1].
0 0 O 1 0 O 0 1 0 1 0 O
We have d(%) =2 and in(¢)=1{(1,1),(1,2),(2,1),(2,2)}. Therefore
S={1,..2} x {1,..3}\in(®) = {(1,3),23)}, 1(S)=]|" ° 1}

0 0 1
So A(S) =1 and (by the Theorem) p(%)<d(%)—1+A(S)=2.
The other bounds give p(%) < 3.
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“expected” covering radius of € is for g — +-oo.

Let 0 < k < nm be an integer. Denote by F the family of linear codes ¢ C Fg*™ of
dimension k. Let #':={¢ € .F |p(€)=n—|k/m|}. Then

. |Z _
qﬂ)r_ni_w 7 1 whenever k<(m—n+|k/m|]+1)( k/m]+1).

Thank you!



