Network Coding and the Rank Metric

Alberto Ravagnani

University College Dublin

ICERM, Nov. 2018

Alberto Ravagnani (University College Dublin)

Network Coding and the Rank Metric

November 2018

DQC

2 Rank-metric codes and *q*-polymatroids

Alberto Ravagnani (University College Dublin)

Network Coding and the Rank Metric

► E 🔊 November 2018

DQC

Network coding

2 Rank-metric codes and q-polymatroids

Alberto Ravagnani (University College Dublin)

Network Coding and the Rank Metric

► E 🔊 November 2018

DQC

Network coding: data transmission over networks (streaming, patches distribution, ...)

DQC

Network coding: data transmission over networks (streaming, patches distribution, ...)

terminals

- One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

Sar

Network coding: data transmission over networks (streaming, patches distribution, ...)

terminals

- One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

What should the nodes do?

Sar

Network coding: data transmission over networks (streaming, patches distribution, ...)

terminals

- One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).

Alberto Ravagnani (University College Dublin)

November 2018

Sar

Network coding: data transmission over networks (streaming, patches distribution, ...)

terminals

- One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to **all** terminals per channel use (rate).

IDEA (Ahlswede-Cai-Li-Yeung 2000): allow the nodes to recombine packets.

Sar

Alberto Ravagnani (University College Dublin)

► E ↔

590

Alberto Ravagnani (University College Dublin)

► Ξ 🔊 November 2018

990

メロト メロト メヨト メヨト

Alberto Ravagnani (University College Dublin)

► E ↔

990

► Ξ 🔊 November 2018

990

► Ξ 🔊 November 2018

990

This strategy is better than routing.

November 2018

DQC

Networks

Definition

- A (single-source) network is a 4-tuple $\mathcal{N} = (\mathcal{V}, \mathcal{E}, S, T)$ where:
 - $\ \, \bullet \ \, (\mathscr{V},\mathscr{E}) \ \, \text{is a finite directed acyclic multigraph,}$
 - 2 $S \in \mathscr{V}$ is the source,
 - **3** $\mathbf{T} \subseteq \mathscr{V}$ is the set of **terminals** or **sinks**.

DQC

Networks

Definition

- A (single-source) network is a 4-tuple $\mathcal{N} = (\mathcal{V}, \mathcal{E}, S, T)$ where:
 - $\ \, \bullet \ \, (\mathscr{V},\mathscr{E}) \ \, \text{is a finite directed acyclic multigraph,}$
 - **2** $S \in \mathscr{V}$ is the **source**,
 - **3** $T \subseteq \mathscr{V}$ is the set of **terminals** or **sinks**.

(We allow multiple parallel directed edges). We also assume that the following hold.

- $|\mathbf{T}| \geq 1, \ S \notin \mathbf{T}.$
- For any $T \in \mathbf{T}$ there exists a directed path from S to T.
- **(9)** S does not have incoming edges, and terminals $T \in \mathbf{T}$ do not have outgoing edges.
- For every vertex V ∈ 𝒴 \ ({S} ∪ T) there exists a directed path from S to V and a directed path from V to T for some T ∈ T.

Networks

Definition

- A (single-source) network is a 4-tuple $\mathcal{N} = (\mathcal{V}, \mathcal{E}, S, T)$ where:
 - $\ \, \bullet \ \, (\mathscr{V},\mathscr{E}) \ \, \text{is a finite directed acyclic multigraph,}$
 - **2** $S \in \mathscr{V}$ is the **source**,
 - **3** $\mathbf{T} \subseteq \mathscr{V}$ is the set of **terminals** or **sinks**.

(We allow multiple parallel directed edges). We also assume that the following hold.

$$|\mathbf{T}| \ge 1, \ S \notin \mathbf{T}.$$

- For any $T \in \mathbf{T}$ there exists a directed path from S to T.
- **(9)** S does not have incoming edges, and terminals $T \in \mathbf{T}$ do not have outgoing edges.
- **●** For every vertex $V \in \mathscr{V} \setminus (\{S\} \cup \mathbf{T})$ there exists a directed path from S to V and a directed path from V to T for some $T \in \mathbf{T}$.

The elements of \mathscr{V} are the **nodes**. The elements of $\mathscr{V} \setminus (\{S\} \cup \mathbf{T})$ are the **intermediate** nodes. We denote the set of incoming and outgoing edges of a $V \in \mathscr{V}$ by in(V) and out(V), respectively.

Min-cut bound

- $\bullet \ \mathcal{N}$ the network
- S the source
- $\mathbf{T} = \{T_1, ..., T_M\}$ the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)

The (multicast) rate of any communication over ${\mathscr N}$ satisfies

$$rate \leq \mu(\mathcal{N}) := \min\{\min\operatorname{cut}(S, T_i) \mid 1 \leq i \leq M\},\$$

where min-cut(S, T_i) is the min. # of edges that one has to remove in \mathcal{N} to disconnect S and T_i .

Sac

・ロト ・回ト ・ヨト ・ヨト

Min-cut bound

- $\bullet \ \mathcal{N}$ the network
- S the source
- $\mathbf{T} = \{T_1, ..., T_M\}$ the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)

The (multicast) rate of any communication over ${\mathscr N}$ satisfies

$$rate \leq \mu(\mathcal{N}) := \min\{\min\operatorname{-cut}(S, T_i) \mid 1 \leq i \leq M\},\$$

where min-cut(S, T_i) is the min. # of edges that one has to remove in \mathcal{N} to disconnect S and T_i .

Question

Can we design node operations (network code) so that the bound is achieved?

Min-cut bound

- $\bullet \ \mathcal{N}$ the network
- S the source
- $\mathbf{T} = \{T_1, ..., T_M\}$ the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)

The (multicast) rate of any communication over $\mathcal N$ satisfies

$$rate \leq \mu(\mathcal{N}) := \min\{\min\operatorname{-cut}(S, T_i) \mid 1 \leq i \leq M\},\$$

where min-cut(S, T_i) is the min. # of edges that one has to remove in \mathcal{N} to disconnect S and T_i .

Question

Can we design node operations (network code) so that the bound is achieved?

YES, if $q \gg 0$. In fact, **linear operations** suffice.

Alberto Ravagnani (University College Dublin)

November 2018

Example

► Ξ 🔊 November 2018

590

(日)

Example

 \min -cut $(S, T_1) = \min$ -cut $(S, T_2) = 2 \Rightarrow \mu(\mathcal{N}) = 2.$

Therefore the strategy is optimal over any field \mathbb{F}_q .

Moreover, the node operations are linear.

DQC

メロト メロト メヨト メヨト

DQC

Let \mathscr{N} be a network, and let $n = \mu(\mathscr{N})$. Assume that:

- the source S sends messages $v_1,...,v_n \in \mathbb{F}_q^n$,
- the nodes perform linear operations (linear network coding) on the received inputs,
- terminal T collects $w_1^T, ..., w_{r(T)}^T$ from the incoming edges, where r(T) = |in(T)|.

ヘロア 人間 アメヨア 小田 ア

Let \mathscr{N} be a network, and let $n = \mu(\mathscr{N})$. Assume that:

- \bullet the source S sends messages $v_1,...,v_n\in \mathbb{F}_q^n,$
- the nodes perform linear operations (linear network coding) on the received inputs,
- terminal T collects $w_1^T, ..., w_{r(T)}^T$ from the incoming edges, where r(T) = |in(T)|.

Then we can write:

$$\begin{bmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_{r(T)}^T \end{bmatrix} = G(T) \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix},$$

where $G(T) \in \mathbb{F}_q^{r(T) \times n}$ is the **transfer matrix** at *T*, describing all linear nodes operations.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Let \mathscr{N} be a network, and let $n = \mu(\mathscr{N})$. Assume that:

- \bullet the source S sends messages $v_1,...,v_n\in \mathbb{F}_q^n,$
- the nodes perform linear operations (linear network coding) on the received inputs,
- terminal T collects $w_1^T, ..., w_{r(T)}^T$ from the incoming edges, where r(T) = |in(T)|.

Then we can write:

$$\begin{bmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_{r(T)}^T \end{bmatrix} = G(T) \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix},$$

where $G(T) \in \mathbb{F}_q^{r(T) \times n}$ is the **transfer matrix** at *T*, describing all linear nodes operations.

Theorem (Li-Yeung-Cai 2002; Kötter-Médard 2003)

• Without loss of generality, $r(T) = n = \mu(\mathcal{N})$ for all $T \in \mathbf{T}$.

If q ≥ |T|, then there exist linear nodes operations such that G(T) is a n×n invertible matrix for each terminal T ∈ T, simultaneously.

Alberto Ravagnani (University College Dublin)

nan

ヘロア 人間ア 人間ア 人間ア

where $G(T) \in \mathbb{F}_q^{n \times n}$ is invertible for every $T \in \mathbf{T}$ $(q \gg 0)$.

Alberto Ravagnani (University College Dublin)

November 2018

DQC

Let $n = \mu(\mathcal{N})$.

where $G(T) \in \mathbb{F}_q^{n imes n}$ is invertible for every $T \in \mathbf{T}$ $(q \gg 0)$.

Decoding

$$\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = G(T)^{-1} \left(G(T) \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \right).$$

Each terminal $T \in \mathbf{T}$ computes the inverse of its own transfer matrix G(T).

Alberto Ravagnani (University College Dublin)

DQC

November 2018

DQC

メロト メロト メヨト メヨト

To summarize:

Theorem

The (multicast) rate of any communication over $\mathcal N$ satisfies

$$\mathsf{rate} \leq \mu(\mathscr{N}) := \mathsf{min}\{\mathsf{min-cut}(S, T_i) \mid 1 \leq i \leq M\}.$$

Moreover, if q is sufficiently large the rate is achievable in one shot with linear NC.

Alberto Ravagnani (University College Dublin)

November 2018

Sar

Alberto Ravagnani (University College Dublin)

DQC

- One adversary can change the value of up to t edges (t is the adversarial strength).
- The adversary knows the network code (pre-assigned, linear or not).

DQC

<ロト <回ト < 三ト < 三ト

- One adversary can change the value of up to t edges (t is the adversarial strength).
- The adversary knows the network code (pre-assigned, linear or not).

DQC

- One adversary can change the value of up to t edges (t is the adversarial strength).
- The adversary knows the network code (pre-assigned, linear or not).

DQC

- One adversary can change the value of up to t edges (t is the adversarial strength).
- The adversary knows the network code (pre-assigned, linear or not).

DQC

- One adversary can change the value of up to t edges (t is the adversarial strength).
- The adversary knows the network code (pre-assigned, linear or not).

SOC

- One adversary can change the value of up to t edges (t is the adversarial strength).
- The adversary knows the network code (pre-assigned, linear or not).

SOC

- One adversary can change the value of up to t edges (t is the adversarial strength).
- The adversary knows the network code (pre-assigned, linear or not).

Sar

- One adversary can change the value of up to t edges (t is the adversarial strength).
- The adversary knows the network code (pre-assigned, linear or not).

Natural solution: design the node operations carefully (decoding at intermediate nodes).

Sar

- One adversary can change the value of up to t edges (t is the adversarial strength).
- The adversary knows the network code (pre-assigned, linear or not).

Natural solution: design the node operations carefully (decoding at intermediate nodes). **Other solution:** use rank-metric codes.

Sar

Suppose we use linear network coding, $n = \mu(\mathcal{N})$.

Alberto Ravagnani (University College Dublin)

November 2018

DQC

Suppose we use <u>linear</u> network coding, $n = \mu(\mathcal{N})$.

 $G(T) \in \mathbb{F}_q^{n \times n}$ is invertible for all $T \in \mathbf{T}$ $(q \gg 0)$.

Alberto Ravagnani (University College Dublin)

DQC

Suppose we use <u>linear</u> network coding, $n = \mu(\mathcal{N})$.

 $G(T) \in \mathbb{F}_q^{n imes n}$ is invertible for all $T \in \mathbf{T}$ $(q \gg 0)$.

In an error-free context: X is sent, $G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$. If errors occur: X is sent, $Y(T) \neq G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.

DQC

Suppose we use <u>linear</u> network coding, $n = \mu(\mathcal{N})$.

 $G(T) \in \mathbb{F}_q^{n imes n}$ is invertible for all $T \in \mathbf{T}$ $(q \gg 0)$.

In an error-free context: X is sent, $G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$. If errors occur: X is sent, $Y(T) \neq G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.

Theorem (Silva-Kschischang-Koetter 2008)

If at most t edges were corrupted, then $rk(Y(T) - G(T) \cdot X) \leq t$ for all $T \in T$.

Alberto Ravagnani (University College Dublin)

Sac

Suppose we use <u>linear</u> network coding, $n = \mu(\mathcal{N})$.

 $G(T) \in \mathbb{F}_q^{n imes n}$ is invertible for all $T \in \mathbf{T}$ $(q \gg 0)$.

In an error-free context: X is sent, $G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$. If errors occur: X is sent, $Y(T) \neq G(T) \cdot X$ is received by terminal $T \in \mathbf{T}$.

Theorem (Silva-Kschischang-Koetter 2008)

If at most t edges were corrupted, then $rk(Y(T) - G(T) \cdot X) \le t$ for all $T \in T$.

IDEA: use the **rank metric** as a measure of the discrepancy between Y(T) and $G(T) \cdot X$.

$$d_{\mathsf{rk}}(A,B) = \mathsf{rk}(A-B).$$

Alberto Ravagnani (University College Dublin)

590

- What was sent: X
- What should have been received: $G(T) \cdot X$
- What was received: Y(T)

DQC

メロト メロト メヨト メヨト

- What was sent: X
- What should have been received: $G(T) \cdot X$
- What was received: Y(T)

Theorem (Silva-Kschischang-Koetter 2008)

The adversarial strength t is an upper bound for the rank distance

$$d_{\mathsf{rk}}(Y(T), G(T) \cdot X) = d_{\mathsf{rk}}(G(T)^{-1} \cdot Y(T), X).$$

Sar

- What was sent: X
- What should have been received: $G(T) \cdot X$
- What was received: Y(T)

Theorem (Silva-Kschischang-Koetter 2008)

The adversarial strength t is an upper bound for the rank distance

$$d_{\mathsf{rk}}(Y(T), G(T) \cdot X) = d_{\mathsf{rk}}(G(T)^{-1} \cdot Y(T), X).$$

According to this metric, errors propagate but do not amplify.

Alberto Ravagnani (University College Dublin)

Sar

イロト イヨト イヨト イヨ

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

Communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding
- (3) separable: network code and rank-metric code can be designed independently

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

Communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding
- (3) separable: network code and rank-metric code can be designed independently

Theorem (R.-Kschischang)

For more general scenarios, there is no capacity-achieving scheme with (2) and (3).

E.g., multiple adversaries, erasure adversaries, or restricted adversaries. We study these in *Adversarial Network Coding*, IEEE Trans. Inf. Th. 2018.

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

Communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding
- (3) separable: network code and rank-metric code can be designed independently

Theorem (R.-Kschischang)

For more general scenarios, there is no capacity-achieving scheme with (2) and (3).

E.g., multiple adversaries, erasure adversaries, or restricted adversaries. We study these in *Adversarial Network Coding*, IEEE Trans. Inf. Th. 2018.

ACHTUNG! Noise is **adversarial**. Probabilistic models require different methods.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

Network coding

2 Rank-metric codes and q-polymatroids

DQC

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(M) \mid M \in \mathscr{C}, \ M \neq 0\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(M) \mid M \in \mathscr{C}, \ M \neq 0\}.$$

Codes as math objects \rightsquigarrow connections to other areas of mathematics:

- rank-metric codes and association schemes
- rank-metric codes and q-designs
- rank-metric codes and lattices
- rank-metric codes and semifields
- rank-metric codes and q-rook polynomials
- rank-metric codes and q-polymatroids

A rank-metric code is a non-zero \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(M) \mid M \in \mathscr{C}, \ M \neq 0\}.$$

Codes as math objects \rightsquigarrow connections to other areas of mathematics:

- rank-metric codes and association schemes
- rank-metric codes and q-designs
- rank-metric codes and lattices
- rank-metric codes and semifields
- rank-metric codes and q-rook polynomials
- rank-metric codes and q-polymatroids \leftarrow with E. Gorla, H. López and R. Jurrius

Goal (among others)

Give a combinatorial interpretation to generalized rank weights.

Alberto Ravagnani (University College Dublin)

November 2018

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つへで

Generalized rank weights

For $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$,

$$\mathsf{maxrk}(\mathscr{C}) = \mathsf{max}\{\mathsf{rk}(M) \mid M \in \mathscr{C}\}.$$

Proposition

 $\dim(\mathscr{C}) \leq \max\{n, m\} \cdot \max\{\mathscr{C}\}.$

Definition

 $\mathscr{C} \leq \mathbb{F}_{a}^{n \times m}$ is an **optimal anticode** if it meets the bound.

DQC

ヘロト ヘロト ヘヨト ヘヨト

Generalized rank weights

For $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$,

$$\mathsf{maxrk}(\mathscr{C}) = \mathsf{max}\{\mathsf{rk}(M) \mid M \in \mathscr{C}\}.$$

Proposition

 $\dim(\mathscr{C}) \leq \max\{n, m\} \cdot \max\{\mathscr{C}\}.$

Definition

 $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ is an **optimal anticode** if it meets the bound.

Anticodes are "tools" to study codes.

Definition (R.)

For $1 \le r \le k = \dim(\mathscr{C})$, the *r*-th generalized (rank) weight of \mathscr{C} is

$$d_r(\mathscr{C}) \;=\; rac{1}{m} \; \min\{\dim(\mathscr{A}) \,|\, \mathscr{A} \; ext{is an optimal anticode, } \dim(\mathscr{C} \cap \mathscr{A}) \geq r\}$$

k-dimensional code $\mathscr{C} \leq \mathbb{F}_q^{n \times m} \quad \leadsto \quad (d_1, d_2, ..., d_k) \in \mathbb{N}^k.$

Applications: secret sharing schemes.

Alberto Ravagnani (University College Dublin)

<ロト < 団 ト < 三 ト < 三 ト 三 のへで</p>

For $1 \le r \le k = \dim(\mathscr{C})$, the *r*-th **generalized** (rank) weight of \mathscr{C} is

 $d_r(\mathscr{C}) = \min\{\dim(\mathscr{A}) \mid \mathscr{A} \text{ is an optimal anticode, } \dim(\mathscr{C} \cap \mathscr{A}) \geq r\}$

Generalized weights are a code invariant.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

For $1 \le r \le k = \dim(\mathscr{C})$, the *r*-th **generalized** (rank) weight of \mathscr{C} is

 $d_r(\mathscr{C}) = \min\{\dim(\mathscr{A}) \mid \mathscr{A} \text{ is an optimal anticode, } \dim(\mathscr{C} \cap \mathscr{A}) \geq r\}$

Generalized weights are a code invariant.

Definition

Codes $\mathscr{C}, \mathscr{C}' \leq \mathbb{F}_q^{n \times m}$ are **equivalent** if there exists $f : (\mathbb{F}_q^{n \times m}, d_{\mathsf{rk}}) \to (\mathbb{F}_q^{n \times m}, d_{\mathsf{rk}}) \mathbb{F}_q$ -linear isometry such that

$$f(\mathscr{C}) = \mathscr{C}'.$$

Remark

Equivalent codes have the same generalized weights.

Alberto Ravagnani (University College Dublin)

November 2018

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 二臣 - のへで

Definition (Gorla-López-Jurrius-R. 2018)

A *q*-polymatroid is a pair $P = (\mathbb{F}_q^n, \rho)$ where $n \ge 1$ and ρ is a function from the set of subspaces of \mathbb{F}_q^n to \mathbb{R} such that, for all $U, V \le \mathbb{F}_q^n$:

- $0 \le \rho(U) \le \dim(U)$,
- if $U \subseteq V$, then $\rho(U) \leq \rho(V)$,
- $\rho(U+V)+\rho(U\cap V)\leq \rho(U)+\rho(V).$

Remark: we allow $\rho(U) \notin \mathbb{Z}$.

イロン イロン イヨン イヨン

Definition (Gorla-López-Jurrius-R. 2018)

A *q*-polymatroid is a pair $P = (\mathbb{F}_q^n, \rho)$ where $n \ge 1$ and ρ is a function from the set of subspaces of \mathbb{F}_q^n to \mathbb{R} such that, for all $U, V \le \mathbb{F}_q^n$:

- $0 \le \rho(U) \le \dim(U)$,
- if $U \subseteq V$, then $\rho(U) \leq \rho(V)$,
- $\rho(U+V)+\rho(U\cap V)\leq \rho(U)+\rho(V).$

Remark: we allow $\rho(U) \notin \mathbb{Z}$.

Let U^{\perp} denote the orthogonal of $U \leq \mathbb{F}_q^n$ w.r. to the standard inner product.

Theorem (Gorla-López-Jurrius-R. 2018)

Let $P = (\mathbb{F}_q^n, \rho)$ be a *q*-polymatroid. Define

$$ho^*(U) = \dim(U) -
ho(\mathbb{F}_q^n) +
ho(U^{\perp}) \qquad ext{for } U \leq \mathbb{F}_q^n.$$

Then (\mathbb{F}_q^n, ρ^*) is a *q*-polymatroid. We call it the **dual** of (\mathbb{F}_q^n, ρ) .

Sac

<ロト <回ト < 三ト < 三ト -

Let $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ be a rank-metric code. For $U \leq \mathbb{F}_q^n$ and $V \leq \mathbb{F}_q^m$, define the subcodes

$$\begin{aligned} \mathscr{C}^{\mathsf{cs}}(U) &= \{X \in \mathscr{C} \mid \mathsf{cs}(X) \leq U\} \leq \mathscr{C}, \\ \mathscr{C}^{\mathsf{rs}}(V) &= \{X \in \mathscr{C} \mid \mathsf{rs}(X) \leq V\} \leq \mathscr{C}. \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - の々ぐ

Let $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ be a rank-metric code. For $U \leq \mathbb{F}_q^n$ and $V \leq \mathbb{F}_q^m$, define the subcodes

$$\begin{aligned} \mathscr{C}^{\mathsf{cs}}(U) &= \{X \in \mathscr{C} \mid \mathsf{cs}(X) \leq U\} \leq \mathscr{C}, \\ \mathscr{C}^{\mathsf{rs}}(V) &= \{X \in \mathscr{C} \mid \mathsf{rs}(X) \leq V\} \leq \mathscr{C}. \end{aligned}$$

Then let

$$\begin{split} \rho^{\mathrm{cs}}_{\mathscr{C}}(U) &= \frac{1}{m} \left(\dim \mathscr{C} - \dim \mathscr{C}^{\mathrm{cs}}(U^{\perp}) \right), \\ \rho^{\mathrm{rs}}_{\mathscr{C}}(V) &= \frac{1}{m} \left(\dim \mathscr{C} - \dim \mathscr{C}^{\mathrm{rs}}(V^{\perp}) \right). \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - の々ぐ

Let $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ be a rank-metric code. For $U \leq \mathbb{F}_q^n$ and $V \leq \mathbb{F}_q^m$, define the subcodes

$$\begin{aligned} \mathscr{C}^{\mathsf{cs}}(U) &= \{X \in \mathscr{C} \mid \mathsf{cs}(X) \leq U\} \leq \mathscr{C}, \\ \mathscr{C}^{\mathsf{rs}}(V) &= \{X \in \mathscr{C} \mid \mathsf{rs}(X) \leq V\} \leq \mathscr{C}. \end{aligned}$$

Then let

$$\begin{split} \rho^{\mathsf{cs}}_{\mathscr{C}}(U) &= \quad \frac{1}{m} \left(\dim \mathscr{C} - \dim \mathscr{C}^{\mathsf{cs}}(U^{\perp}) \right), \\ \rho^{\mathsf{rs}}_{\mathscr{C}}(V) &= \quad \frac{1}{m} \left(\dim \mathscr{C} - \dim \mathscr{C}^{\mathsf{rs}}(V^{\perp}) \right). \end{split}$$

Theorem (Gorla-López-Jurrius-R. 2018)

 $(\mathbb{F}_q^n, \rho_{\mathscr{C}}^{cs})$ and $(\mathbb{F}_q^m, \rho_{\mathscr{C}}^{rs})$ are q-polymatroids.

We associate to a code $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ a pair of q-polymatroids.

What do these remember?

Alberto Ravagnani (University College Dublin)

November 2018

 $\mathscr{C} \leq \mathbb{F}_q^{n \times m} \rightsquigarrow (\mathbb{F}_q^n, \rho_{\mathscr{C}}^{cs}), (\mathbb{F}_q^m, \rho_{\mathscr{C}}^{rs})$ What do these remember?

 \bullet the dimension of ${\mathscr C}$

Proposition (Gorla-López-Jurrius-R. 2018)

$$\dim \mathscr{C} = m \cdot \rho_{\mathscr{C}}^{\mathsf{cs}}(\mathbb{F}_q^n) = n \cdot \rho_{\mathscr{C}}^{\mathsf{rs}}(\mathbb{F}_q^m)$$

DQC

 $\mathscr{C} \leq \mathbb{F}_q^{n \times m} \rightsquigarrow (\mathbb{F}_q^n, \rho_{\mathscr{C}}^{cs}), (\mathbb{F}_q^m, \rho_{\mathscr{C}}^{rs})$ What do these remember?

 \bullet the dimension of ${\mathscr C}$

Proposition (Gorla-López-Jurrius-R. 2018)

 $\dim \mathscr{C} = m \cdot \rho_{\mathscr{C}}^{\mathsf{cs}}(\mathbb{F}_q^n)$ $= n \cdot \rho_{\mathscr{C}}^{\mathsf{rs}}(\mathbb{F}_q^m)$

 $\bullet\,$ the minimum distance of ${\mathscr C}$

Theorem (Gorla-López-Jurrius-R. 2018)

$$d_{\mathsf{rk}}(\mathscr{C}) = n+1-\min\left\{d \mid \rho_{\mathscr{C}}^{\mathsf{cs}}(U) = \frac{\dim \mathscr{C}}{m} \text{ for all } U \leq \mathbb{F}_q^n \text{ with } \dim U = d\right\}$$
$$= m+1-\min\left\{d \mid \rho_{\mathscr{C}}^{\mathsf{rs}}(V) = \frac{\dim \mathscr{C}}{n} \text{ for all } V \leq \mathbb{F}_q^m \text{ with } \dim V = d\right\}$$

Alberto Ravagnani (University College Dublin)

November 2018

 $\mathscr{C} \leq \mathbb{F}_q^{n \times m} \rightsquigarrow (\mathbb{F}_q^n, \rho_{\mathscr{C}}^{cs}), (\mathbb{F}_q^m, \rho_{\mathscr{C}}^{rs})$ What do these remember?

 \bullet the generalized weights of ${\mathscr C}$

Theorem (Gorla-López-Jurrius-R. 2018)

- If m > n we have

$$d_r(\mathscr{C}) = \min\{n - \dim(U) \mid U \leq \mathbb{F}_q^n, \dim \mathscr{C} - m\rho_{\mathscr{C}}^{cs}(U) \geq r\}$$

- If m < n we have

$$d_r(\mathscr{C}) = \min\{m - \dim(V) \mid V \leq \mathbb{F}_q^m, \dim \mathscr{C} - n\rho_{\mathscr{C}}^{\mathsf{rs}}(V) \geq r\}$$

- If n = m we have

$$d_r(\mathscr{C}) = \min\{d_r^{\rm cs}(\mathscr{C}), \ d_r^{\rm rs}(\mathscr{C})\}$$

where

$$d_r^{cs}(\mathscr{C}) = \min\{n - \dim(U) \mid U \le \mathbb{F}_q^n, \dim \mathscr{C} - m\rho_{\mathscr{C}}^{cs}(U) \ge r\}$$

$$d_r^{rs}(\mathscr{C}) = \min\{m - \dim(V) \mid V \le \mathbb{F}_q^m, \dim \mathscr{C} - n\rho_{\mathscr{C}}^{rs}(V) \ge r\}$$

Alberto Ravagnani (University College Dublin)

November 2018

DQC

Other connections between codes and *q*-polymatroids:

Theorem (Gorla-López-Jurrius-R. 2018)

- The property of being an optimal (MRD) code is captured by the q-polymatroids
- The property of being an optimal anticode code is captured by the q-polymatroids
- The q-polymatroids of \mathscr{C}^{\perp} are the duals of the q-polymatoids of \mathscr{C}
- Equivalent codes have equivalent q-polymatroids

Sac

Other connections between codes and *q*-polymatroids:

Theorem (Gorla-López-Jurrius-R. 2018)

- The property of being an optimal (MRD) code is captured by the q-polymatroids
- The property of being an optimal anticode code is captured by the q-polymatroids
- The q-polymatroids of \mathscr{C}^{\perp} are the duals of the q-polymatoids of \mathscr{C}
- Equivalent codes have equivalent q-polymatroids

Thank you very much!

イロト 不得 トイヨト イヨト