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What is network coding about?

Network coding: data transmission over networks (streaming, patches distribution, ...)

SFmq 3 v1, ...,vn

T1

T2

TM

terminals

One source S attempts to transmit messages v1, ...,vn ∈ Fm
q .

The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the messages that are transmitted to all terminals per channel use (rate).

IDEA (Ahlswede-Cai-Li-Yeung 2000): allow the nodes to recombine packets.
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The “Butterfly” network

v1

v2
S

T1

T2

V

v1

v2

v1

v2

v1 +v2

v1 +v2

v1 +v2

v1

v2

This strategy is better than routing.
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Networks

Definition

A (single-source) network is a 4-tuple N = (V ,E ,S ,T) where:

1 (V ,E ) is a finite directed acyclic multigraph,

2 S ∈ V is the source,

3 T⊆ V is the set of terminals or sinks.

(We allow multiple parallel directed edges). We also assume that the following hold.

4 |T| ≥ 1, S /∈ T.

5 For any T ∈ T there exists a directed path from S to T .

6 S does not have incoming edges, and terminals T ∈ T do not have outgoing edges.

7 For every vertex V ∈ V \ ({S}∪T) there exists a directed path from S to V and a
directed path from V to T for some T ∈ T.

The elements of V are the nodes. The elements of V \ ({S}∪T) are the intermediate
nodes. We denote the set of incoming and outgoing edges of a V ∈ V by in(V ) and
out(V ), respectively.
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Min-cut bound

N the network

S the source

T = {T1, ...,TM} the set of terminals

Theorem (Ahlswede-Cai-Li-Yeung 2000)

The (multicast) rate of any communication over N satisfies

rate≤ µ(N ) := min{min-cut(S ,Ti ) | 1≤ i ≤M},

where min-cut(S ,Ti ) is the min. # of edges that one has to remove in N to disconnect
S and Ti .

Question

Can we design node operations (network code) so that the bound is achieved?

YES, if q� 0. In fact, linear operations suffice.
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Example
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v2
S

T1

T2

V

v1
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v1 +v2

v1 +v2

v1 +v2

v1

v2

min-cut(S ,T1) = min-cut(S ,T2) = 2 ⇒ µ(N ) = 2.

Therefore the strategy is optimal over any field Fq .

Moreover, the node operations are linear.
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The max-flow-min-cut theorem

(not the max-flow-min-cut theorem from graph theory)

Let N be a network, and let n = µ(N ) . Assume that:

the source S sends messages v1, ...,vn ∈ Fn
q ,

the nodes perform linear operations (linear network coding) on the received inputs,

terminal T collects wT
1 , ...,wT

r(T ) from the incoming edges, where r(T ) = |in(T )|.

Then we can write: 
wT
1

wT
2
...

wT
r(T )

= G(T )


v1

v2
...

vn

 ,

where G(T ) ∈ Fr(T )×n
q is the transfer matrix at T , describing all linear nodes operations.

Theorem (Li-Yeung-Cai 2002; Kötter-Médard 2003)

1 Without loss of generality, r(T ) = n = µ(N ) for all T ∈ T.

2 If q ≥ |T|, then there exist linear nodes operations such that G(T ) is a n×n
invertible matrix for each terminal T ∈ T, simultaneously.
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The max-flow-min-cut theorem

Let n = µ(N ).

S

T

Fn×m
q 3


v1
...

vn


G(T )


v1
...

vn



where G(T ) ∈ Fn×nq is invertible for every T ∈ T (q� 0).

Decoding 
v1
...

vn

= G(T )−1

G(T )


v1
...

vn


 .

Each terminal T ∈ T computes the inverse of its own transfer matrix G(T ).
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The max-flow-min-cut theorem

v1

v2
S

T1

T2

[
1 0

1 1

][
v1

v2

]

[
1 1

0 1

][
v1

v2

]
V

v1

v2

v1

v2

v1 +v2

v1 +v2

v1 +v2

v1

v2

To summarize:

Theorem

The (multicast) rate of any communication over N satisfies

rate≤ µ(N ) := min{min-cut(S ,Ti ) | 1≤ i ≤M}.

Moreover, if q is sufficiently large the rate is achievable in one shot with linear NC.
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Error correction in networks

The model

One adversary can change the value of up to t edges (t is the adversarial strength).

The adversary knows the network code (pre-assigned, linear or not).

S

T1

T2

×××
×××

×××
×××
×××

×××
×××

⊗⊗⊗
ERROR AMPLIFICATION

Natural solution: design the node operations carefully (decoding at intermediate nodes).
Other solution: use rank-metric codes.
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Error correction in networks

Suppose we use linear network coding, n = µ(N ).

S

T

Fn×mq 3


v1
...

vn

= X

G(T ) ·X

G(T ) ∈ Fn×nq is invertible for all T ∈ T (q� 0).

In an error-free context: X is sent, G(T ) ·X is received by terminal T ∈ T.

If errors occur: X is sent, Y (T ) 6= G(T ) ·X is received by terminal T ∈ T.

Theorem (Silva-Kschischang-Koetter 2008)

If at most t edges were corrupted, then rk(Y (T )−G(T ) ·X )≤ t for all T ∈ T.

IDEA: use the rank metric as a measure of the discrepancy between Y (T ) and G(T ) ·X .

drk(A,B) = rk(A−B).
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If at most t edges were corrupted, then rk(Y (T )−G(T ) ·X )≤ t for all T ∈ T.

IDEA: use the rank metric as a measure of the discrepancy between Y (T ) and G(T ) ·X .

drk(A,B) = rk(A−B).
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Error correction in networks

S

T

Fn×mq 3 X

G(T ) ·X

What was sent: X

What should have been received: G(T ) ·X
What was received: Y (T )

Theorem (Silva-Kschischang-Koetter 2008)

The adversarial strength t is an upper bound for the rank distance

drk(Y (T ),G(T ) ·X ) = drk(G(T )−1 ·Y (T ),X ).

According to this metric, errors propagate but do not amplify.
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Rank-metric codes

Definition

A rank-metric code is a non-zero Fq-subspace C ≤ Fn×mq . Its minimum distance is

drk(C ) = min{rk(X ) | X ∈ C , X 6= 0}.

Communication schemes based on rank-metric codes are:

(1) capacity-achieving (for q� 0)

(2) compatible with linear network coding

(3) separable: network code and rank-metric code can be designed independently

Theorem (R.-Kschischang)

For more general scenarios, there is no capacity-achieving scheme with (2) and (3).

E.g., multiple adversaries, erasure adversaries, or restricted adversaries.
We study these in Adversarial Network Coding, IEEE Trans. Inf. Th. 2018.

ACHTUNG! Noise is adversarial. Probabilistic models require different methods.
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2 Rank-metric codes and q-polymatroids
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Rank-metric codes

Definition

A rank-metric code is a non-zero Fq-subspace C ≤ Fn×mq . Its minimum distance is

drk(C ) = min{rk(M) |M ∈ C , M 6= 0}.

Codes as math objects  connections to other areas of mathematics:

rank-metric codes and association schemes

rank-metric codes and q-designs

rank-metric codes and lattices

rank-metric codes and semifields

rank-metric codes and q-rook polynomials

rank-metric codes and q-polymatroids ← with E. Gorla, H. López and R. Jurrius

Goal (among others)

Give a combinatorial interpretation to generalized rank weights.
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Generalized rank weights

For C ≤ Fn×m
q ,

maxrk(C ) = max{rk(M) |M ∈ C }.

Proposition

dim(C )≤max{n,m} ·maxrk(C ).

Definition

C ≤ Fn×mq is an optimal anticode if it meets the bound.

Anticodes are “tools” to study codes.

Definition (R.)

For 1≤ r ≤ k = dim(C ), the r -th generalized (rank) weight of C is

dr (C ) =
1

m
min{dim(A ) |A is an optimal anticode, dim(C ∩A )≥ r}

k-dimensional code C ≤ Fn×mq  (d1,d2, ...,dk) ∈ Nk .

Applications: secret sharing schemes.
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Generalized rank weights

Definition

For 1≤ r ≤ k = dim(C ), the r -th generalized (rank) weight of C is

dr (C ) = min{dim(A ) |A is an optimal anticode, dim(C ∩A )≥ r}

Generalized weights are a code invariant.

Definition

Codes C ,C ′ ≤ Fn×mq are equivalent if there exists f : (Fn×mq ,drk)→ (Fn×mq ,drk) Fq-linear
isometry such that

f (C ) = C ′.

Remark

Equivalent codes have the same generalized weights.
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q-polymatroids

Definition (Gorla-López-Jurrius-R. 2018)

A q-polymatroid is a pair P = (Fnq ,ρ) where n ≥ 1 and ρ is a function from the set of
subspaces of Fnq to R such that, for all U,V ≤ Fnq :

0≤ ρ(U)≤ dim(U),

if U ⊆ V , then ρ(U)≤ ρ(V ),

ρ(U +V ) + ρ(U ∩V )≤ ρ(U) + ρ(V ).

Remark: we allow ρ(U) /∈ Z.

Let U⊥ denote the orthogonal of U ≤ Fn
q w.r. to the standard inner product.

Theorem (Gorla-López-Jurrius-R. 2018)

Let P = (Fnq ,ρ) be a q-polymatroid. Define

ρ
∗(U) = dim(U)−ρ(Fnq) + ρ(U⊥) for U ≤ Fn

q .

Then (Fn
q ,ρ
∗) is a q-polymatroid. We call it the dual of (Fn

q ,ρ).
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Codes and q-polymatroids

Let C ≤ Fn×m
q be a rank-metric code. For U ≤ Fnq and V ≤ Fm

q , define the subcodes

C cs(U) = {X ∈ C | cs(X )≤ U} ≤ C ,

C rs(V ) = {X ∈ C | rs(X )≤ V } ≤ C .

Then let

ρ
cs
C (U) =

1

m

(
dimC −dimC cs(U⊥)

)
,

ρ
rs
C (V ) =

1

m

(
dimC −dimC rs(V⊥)

)
.

Theorem (Gorla-López-Jurrius-R. 2018)

(Fn
q ,ρ

cs
C ) and (Fmq ,ρrs

C ) are q-polymatroids.

We associate to a code C ≤ Fn×mq a pair of q-polymatroids.

What do these remember?
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Codes and q-polymatroids

C ≤ Fn×mq  (Fnq ,ρcs
C ), (Fm

q ,ρrs
C ) What do these remember?

the dimension of C

Proposition (Gorla-López-Jurrius-R. 2018)

dimC = m ·ρcs
C (Fn

q)

= n ·ρrs
C (Fmq )

the minimum distance of C

Theorem (Gorla-López-Jurrius-R. 2018)

drk(C ) = n+ 1−min

{
d | ρcs

C (U) =
dimC

m
for all U ≤ Fnq with dimU = d

}
= m+ 1−min

{
d | ρrs

C (V ) =
dimC

n
for all V ≤ Fmq with dimV = d

}
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Codes and q-polymatroids

C ≤ Fn×mq  (Fnq ,ρcs
C ), (Fm

q ,ρrs
C ) What do these remember?

the generalized weights of C

Theorem (Gorla-López-Jurrius-R. 2018)

– If m > n we have

dr (C ) = min{n−dim(U) | U ≤ Fnq , dimC −mρ
cs
C (U)≥ r}

– If m < n we have

dr (C ) = min{m−dim(V ) | V ≤ Fmq , dimC −nρ
rs
C (V )≥ r}

– If n = m we have
dr (C ) = min{dcs

r (C ), d rs
r (C )}

where
dcs
r (C ) = min{n−dim(U) | U ≤ Fnq , dimC −mρ

cs
C (U)≥ r}

d rs
r (C ) = min{m−dim(V ) | V ≤ Fmq , dimC −nρ

rs
C (V )≥ r}
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Codes and q-polymatroids

Other connections between codes and q-polymatroids:

Theorem (Gorla-López-Jurrius-R. 2018)

The property of being an optimal (MRD) code is captured by the q-polymatroids

The property of being an optimal anticode code is captured by the q-polymatroids

The q-polymatroids of C⊥ are the duals of the q-polymatoids of C

Equivalent codes have equivalent q-polymatroids

Thank you very much!
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