Partitions of Matrix Spaces and q-Rook Polynomials

Alberto Ravagnani

University College Dublin

Neuchâtel, Feb. 2019
joint work with H. Gluesing-Luerssen

MacWilliams-type Identities

A classical result in coding theory:

Theorem (MacWilliams)

Let $\mathscr{C} \leq \mathbb{F}_{q}^{n}$ be a code with the Hamming metric. Then for all $0 \leq j \leq n$ we have

$$
W_{j}^{\mathrm{H}}\left(\mathscr{C}^{\perp}\right)=\sum_{i=0}^{n} \sum_{\ell=0}^{j}(-1)^{\ell}(q-1)^{j-\ell}\binom{i}{\ell}\binom{n-i}{j-\ell} W_{i}^{\mathrm{H}}(\mathscr{C})
$$

These identities are invertible.

MacWilliams-type Identities

A classical result in coding theory:

Theorem (MacWilliams)

Let $\mathscr{C} \leq \mathbb{F}_{q}^{n}$ be a code with the Hamming metric. Then for all $0 \leq j \leq n$ we have

$$
W_{j}^{\mathrm{H}}\left(\mathscr{C}^{\perp}\right)=\sum_{i=0}^{n} \sum_{\ell=0}^{j}(-1)^{\ell}(q-1)^{j-\ell}\binom{i}{\ell}\binom{n-i}{j-\ell} W_{i}^{\mathrm{H}}(\mathscr{C})
$$

These identities are invertible.

Generalizations of this result have been extensively studied in various contexts:

- association schemes
- finite abelian groups
- posets and lattices

Group Characters

Definition

Let $(G,+)$ be a finite abelian group. The character group of G is

$$
\widehat{G}=\left\{\text { group homomorphisms } \chi: G \rightarrow \mathbb{C}^{*}\right\}
$$

endowed with point-wise multiplication:

$$
\chi_{1} \cdot \chi_{2}(g)=\chi_{1}(g) \cdot \chi_{2}(g) \quad \text { for all } g \in G .
$$

Group Characters

Definition

Let $(G,+)$ be a finite abelian group. The character group of G is

$$
\widehat{G}=\left\{\text { group homomorphisms } \chi: G \rightarrow \mathbb{C}^{*}\right\}
$$

endowed with point-wise multiplication:

$$
\chi_{1} \cdot \chi_{2}(g)=\chi_{1}(g) \cdot \chi_{2}(g) \quad \text { for all } g \in G
$$

We focus on a special situation:

- $(G,+)=(V,+)$ is the additive group of a finite-dimensional linear space over \mathbb{F}_{q}
- V is endowed with a given scalar product $\langle\cdot \cdot\rangle$

Remark

(\widehat{V}, \cdot) has a natural structure of $\mathbb{F}_{q^{-}}$-linear space via

$$
a \chi(v)=\chi(a v), \quad a \in \mathbb{F}_{q}, v \in V
$$

Moreover, $\operatorname{dim}(V)=\operatorname{dim}(\widehat{V})$.

Group Characters

We focus on a special situation:

- $(G,+)=(V,+)$ is the additive group of a finite-dimensional linear space over \mathbb{F}_{q}
- V is endowed with a given scalar product $\langle\cdot \cdot\rangle: V \times V \rightarrow \mathbb{F}_{q}$

Remark

$\langle\cdot\rangle$ can be used to identify the spaces $(V,+)$ and (\widehat{V}, \cdot) as follows.
Fix a non-trivial character $\xi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{*}$ (it exists) and let

$$
\psi_{\xi}: V \rightarrow \hat{V}, \quad \psi_{\xi}(v)(w)=\xi(\langle v, w\rangle) \quad \text { for all } v, w \in V .
$$

Group Characters

We focus on a special situation:

- $(G,+)=(V,+)$ is the additive group of a finite-dimensional linear space over \mathbb{F}_{q}
- V is endowed with a given scalar product $\langle\cdot \cdot\rangle: V \times V \rightarrow \mathbb{F}_{q}$

Remark

$\langle\cdot\rangle$ can be used to identify the spaces $(V,+)$ and (\widehat{V}, \cdot) as follows.
Fix a non-trivial character $\xi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{*}$ (it exists) and let

$$
\psi_{\xi}: V \rightarrow \hat{V}, \quad \psi_{\xi}(v)(w)=\xi(\langle v, w\rangle) \quad \text { for all } v, w \in V .
$$

Theorem (Folklore)

ψ_{ξ} is an \mathbb{F}_{q}-isomorphism of linear spaces whenever ξ is non-trivial.

Different choices of ξ give different identifications. However, all the objects we are interested in will not depend on the choice of ξ.

Partitions

A partition $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ of V is invariant if $a P_{i}=P_{i}$ for all $i \in I$ and $a \in \mathbb{F}_{q} \backslash\{0\}$.

Example

Partitioning the elements of \mathbb{F}_{q}^{n} according to their Hamming weight yields \mathscr{P}^{H}.

Partitions

A partition $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ of V is invariant if $a P_{i}=P_{i}$ for all $i \in I$ and $a \in \mathbb{F}_{q} \backslash\{0\}$.

Example

Partitioning the elements of \mathbb{F}_{q}^{n} according to their Hamming weight yields \mathscr{P}^{H}.

Definition

Let $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ be an invariant partition of $V \quad\left(P_{i} \neq \emptyset\right.$ for all $\left.i \in I\right)$.
The dual of \mathscr{P} is the partition $\widehat{\mathscr{P}}$ of V defined by the equivalence relation

$$
w \sim w^{\prime} \Longleftrightarrow \sum_{v \in P_{i}} \psi_{\xi}(v)(w)=\sum_{v \in P_{i}} \psi_{\xi}(v)\left(w^{\prime}\right) \quad \text { for all } i \in I
$$

(recall: $\psi_{\xi}:(V,+) \rightarrow(\widehat{V}, \cdot) \mathbb{F}_{q}$-isomorphism).

Partitions

A partition $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ of V is invariant if $a P_{i}=P_{i}$ for all $i \in I$ and $a \in \mathbb{F}_{q} \backslash\{0\}$.

Example

Partitioning the elements of \mathbb{F}_{q}^{n} according to their Hamming weight yields \mathscr{P}^{H}.

Definition

Let $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ be an invariant partition of $V \quad\left(P_{i} \neq \emptyset\right.$ for all $\left.i \in I\right)$.
The dual of \mathscr{P} is the partition $\widehat{\mathscr{P}}$ of V defined by the equivalence relation

$$
w \sim w^{\prime} \Longleftrightarrow \sum_{v \in P_{i}} \psi_{\xi}(v)(w)=\sum_{v \in P_{i}} \psi_{\xi}(v)\left(w^{\prime}\right) \quad \text { for all } i \in I
$$

(recall: $\psi_{\xi}:(V,+) \rightarrow(\widehat{V}, \cdot) \mathbb{F}_{q}$-isomorphism).
! I am using ξ to define $\widehat{\mathscr{P}}$.

Partitions

A partition $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ of V is invariant if $a P_{i}=P_{i}$ for all $i \in I$ and $a \in \mathbb{F}_{q} \backslash\{0\}$.

Example

Partitioning the elements of \mathbb{F}_{q}^{n} according to their Hamming weight yields \mathscr{P}^{H}.

Definition

Let $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ be an invariant partition of $V \quad\left(P_{i} \neq \emptyset\right.$ for all $\left.i \in I\right)$.
The dual of \mathscr{P} is the partition $\widehat{\mathscr{P}}$ of V defined by the equivalence relation

$$
w \sim w^{\prime} \Longleftrightarrow \sum_{v \in P_{i}} \psi_{\xi}(v)(w)=\sum_{v \in P_{i}} \psi_{\xi}(v)\left(w^{\prime}\right) \quad \text { for all } i \in I
$$

(recall: $\psi_{\xi}:(V,+) \rightarrow(\widehat{V}, \cdot) \mathbb{F}_{q}$-isomorphism).
A. I am using ξ to define $\widehat{\mathscr{P}}$. However,

Proposition

$\widehat{\mathscr{P}}$ does not depend on ξ, if \mathscr{P} is invariant.

Partitions

DATA:

- V an \mathbb{F}_{q}-space of finite dimension
- $\langle\cdot \cdot\rangle$ a scalar product on V
- $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ an invariant partition of V

CONSTRUCTION: the dual partition $\widehat{\mathscr{P}}=\left\{Q_{j}\right\}_{j \in J}$ of V (which is invariant as well)

Partitions

DATA:

- V an \mathbb{F}_{q}-space of finite dimension
- $\langle\cdot \cdot\rangle$ a scalar product on V
- $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ an invariant partition of V

CONSTRUCTION: the dual partition $\widehat{\mathscr{P}}=\left\{Q_{j}\right\}_{j \in J}$ of V (which is invariant as well)

Definition

A code is an \mathbb{F}_{q}-subspace of V. Its dual is

$$
\mathscr{C}^{\perp}=\{w \in V \mid\langle v, w\rangle=0 \text { for all } v \in \mathscr{C}\} \leq V
$$

Define:

- the \mathscr{P}-distribution of $\mathscr{C}: \quad \mathscr{P}(\mathscr{C}, i)=\left|\mathscr{C} \cap P_{i}\right|, \quad i \in I$.
- the $\widehat{\mathscr{P}}$-distribution of $\mathscr{C}^{\perp}: \widehat{\mathscr{P}}\left(\mathscr{C}^{\perp}, j\right)=\left|\mathscr{C}^{\perp} \cap Q_{j}\right|, \quad j \in J$.

Under certain conditions, MacWilliams-type identities hold for the \mathscr{P} - and $\widehat{\mathscr{P}}$-partition.

MacWilliams-type Identities

We say that \mathscr{P} is Fourier-reflexive if $|\mathscr{P}|=|\widehat{\mathscr{P}}|$ and self-dual if $\widehat{\mathscr{P}}=\mathscr{P}$. (self-dual \Longrightarrow Fourier-reflexive)

MacWilliams-type Identities

We say that \mathscr{P} is Fourier-reflexive if $|\mathscr{P}|=|\widehat{\mathscr{P}}|$ and self-dual if $\widehat{\mathscr{P}}=\mathscr{P}$.
(self-dual \Longrightarrow Fourier-reflexive)
Theorem (Generalized MacWilliams Identities)
Let $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ be invariant and Fourier-reflexive.
Let $\widehat{\mathscr{P}}=\left\{Q_{j}\right\}_{j \in J}$. Let $\mathscr{C} \leq V$ be a code. We have

$$
\widehat{\mathscr{P}}\left(\mathscr{C}^{\perp}, j\right)=\frac{1}{|\mathscr{C}|} \sum_{i \in I} K(\mathscr{P} ; i, j) \cdot \mathscr{P}(\mathscr{C}, i)
$$

where $K(\mathscr{P} ; i, j)$ are suitable numbers called Krawtchouk coefficients. Moreover, the matrix of the $K(\mathscr{P} ; i, j)$ is of size $|I| \times|J|=|I| \times|I|$ and invertible.

MacWilliams-type Identities

We say that \mathscr{P} is Fourier-reflexive if $|\mathscr{P}|=|\widehat{\mathscr{P}}|$ and self-dual if $\widehat{\mathscr{P}}=\mathscr{P}$.
(self-dual \Longrightarrow Fourier-reflexive)

Theorem (Generalized MacWilliams Identities)

Let $\mathscr{P}=\left\{P_{i}\right\}_{i \in I}$ be invariant and Fourier-reflexive.
Let $\widehat{\mathscr{P}}=\left\{Q_{j}\right\}_{j \in J}$. Let $\mathscr{C} \leq V$ be a code. We have

$$
\widehat{\mathscr{P}}\left(\mathscr{C}^{\perp}, j\right)=\frac{1}{|\mathscr{C}|} \sum_{i \in I} K(\mathscr{P} ; i, j) \cdot \mathscr{P}(\mathscr{C}, i)
$$

where $K(\mathscr{P} ; i, j)$ are suitable numbers called Krawtchouk coefficients. Moreover, the matrix of the $K(\mathscr{P} ; i, j)$ is of size $|I| \times|J|=|I| \times|I|$ and invertible.

Definition

$$
K(\mathscr{P} ; i, j)=\sum_{w \in Q_{j}} \psi_{\xi}(w)(v), \quad \text { where } v \text { is any vector in } P_{i} .
$$

Again, this does not depend on ξ for invariant partitions.

MacWilliams-type Identities

Problems

Given V with $\langle\cdot \cdot\rangle$,

- Construct Fourier-reflexive partitions \mathscr{P}
- Describe $\widehat{\mathscr{P}}$ and decide if $\widehat{\mathscr{P}}=\mathscr{P}$ (self-duality)
- Compute $K(\mathscr{P} ; i, j)$

MacWilliams-type Identities

Problems

Given V with $\langle\cdot \cdot\rangle$,

- Construct Fourier-reflexive partitions \mathscr{P}
- Describe $\widehat{\mathscr{P}}$ and decide if $\widehat{\mathscr{P}}=\mathscr{P}$ (self-duality)
- Compute $K(\mathscr{P} ; i, j)$

Theorem (essentially Delsarte)

The rank partition on $\mathbb{F}_{q}^{n \times m}$ is self-dual of size $m+1$. Moreover,

$$
K\left(\mathscr{P}^{\mathrm{rk}} ; i, j\right)=\sum_{\ell=0}^{m}(-1)^{j-\ell} q^{n \ell+\binom{j-\ell}{2}}\left[\begin{array}{c}
m-\ell \\
m-j
\end{array}\right]_{q}\left[\begin{array}{c}
m-i \\
\ell
\end{array}\right]_{q} .
$$

We concentrate on the matrix space $\mathbb{F}_{q}^{n \times m}$ with $n \geq m$ endowed with the trace product:

$$
\langle M, N\rangle=\operatorname{Tr}\left(M N^{t}\right)
$$

Other partitions

We study:

- the row-space partition $\mathscr{P}^{\text {rs }}$
- the pivot partition $\mathscr{P}^{\text {piv }}$

These are invariant partitions of $\mathbb{F}_{q}^{n \times m}$.

Other partitions

We study:

- the row-space partition $\mathscr{P}^{\text {rs }}$
- the pivot partition $\mathscr{P}^{\text {piv }}$

These are invariant partitions of $\mathbb{F}_{q}^{n \times m}$.

Results (Gluesing-Luerssen, R.):

- $\mathscr{P}^{\text {rs }}$ is self-dual
- explicit formula for the Krawtchouk coefficients of $\mathscr{P}^{\text {rs }}$
- the pivot partition $\mathscr{P}^{\text {piv }}$ is Fourier-reflexive (not self-dual)
- connection between the Krawtchouk coefficients of $\mathscr{P}^{\text {piv }}$ and rook theory
- notions of extremality from $\mathscr{P}^{\text {rs }}$ and $\mathscr{P}^{\text {piv }}$, and properties of extremal codes
- MacWilliams extension theorem fails for these partitions

The row-space partition

$\mathscr{P}^{\text {rs }}$ partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to their row-spaces. We have:

$$
\left|\mathscr{P}^{\mathrm{rs}}\right|=\sum_{i=0}^{m}\left[\begin{array}{c}
m \\
i
\end{array}\right]_{q} \quad(\text { recall: } m \leq n)
$$

The row-space partition

$\mathscr{P}^{\text {rs }}$ partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to their row-spaces. We have:

$$
\left|\mathscr{P}^{\mathrm{rs}}\right|=\sum_{i=0}^{m}\left[\begin{array}{c}
m \\
i
\end{array}\right]_{q} \quad(\text { recall: } m \leq n)
$$

Theorem (Gluesing-Luerssen, R.)

$\mathscr{P}^{\text {rs }}$ is self-dual, i.e., $\widehat{\mathscr{P} r \mathrm{~s}}=\mathscr{P}^{\text {rs }}$.
Tool in the proof: group actions.

$$
\rho: G L_{n}\left(\mathbb{F}_{q}\right) \times \mathbb{F}_{q}^{n \times m} \rightarrow \mathbb{F}_{q}^{n \times m}, \quad(G, M) \mapsto G M
$$

Then the blocks of $\mathscr{P}^{\text {rs }}$ are the orbits of ρ, from which Fourier-reflexivity follows easily.

The row-space partition

$\mathscr{P}^{\text {rs }}$ partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to their row-spaces. We have:

$$
\left|\mathscr{P}^{\mathrm{rs}}\right|=\sum_{i=0}^{m}\left[\begin{array}{c}
m \\
i
\end{array}\right]_{q} \quad(\text { recall: } m \leq n)
$$

Theorem (Gluesing-Luerssen, R.)

$\mathscr{P}^{\text {rs }}$ is self-dual, i.e., $\widehat{\mathscr{P} r \mathrm{~s}}=\mathscr{P}^{\text {rs }}$.
Tool in the proof: group actions.

$$
\rho: G L_{n}\left(\mathbb{F}_{q}\right) \times \mathbb{F}_{q}^{n \times m} \rightarrow \mathbb{F}_{q}^{n \times m}, \quad(G, M) \mapsto G M
$$

Then the blocks of $\mathscr{P}^{\text {rs }}$ are the orbits of ρ, from which Fourier-reflexivity follows easily.

This argument does not give a formula for the Krawtchouk coefficients.

The row-space partition

Recall: $\quad \mathscr{P}=\left(P_{i}\right)_{i \in I}, \quad \widehat{\mathscr{P}}=\left(Q_{j}\right)_{j \in J}$ invariant partitions. Then
$K(\mathscr{P} ; i, j):=\sum_{w \in Q_{j}} \psi_{\xi}(w)(v), \quad$ where v is any vector in P_{i}
(independent of ξ).

The row-space partition

Recall: $\quad \mathscr{P}=\left(P_{i}\right)_{i \in I}, \quad \widehat{\mathscr{P}}=\left(Q_{j}\right)_{j \in J}$ invariant partitions. Then $K(\mathscr{P} ; i, j):=\sum_{w \in Q_{j}} \psi_{\xi}(w)(v), \quad$ where v is any vector in P_{i}
(independent of ξ).

Theorem (Gluesing-Luerssen, R.)

For $U, V \leq \mathbb{F}_{q}^{m}$ we have

$$
K\left(\mathscr{P}^{\mathrm{rs}} ; U, V\right)=\sum_{t=0}^{m}(-1)^{\operatorname{dim}(U)-t} q^{n t+(\underset{2}{\operatorname{dim}(U)-t})}\left[\begin{array}{c}
\operatorname{dim}\left(U \cap V^{\perp}\right) \\
t
\end{array}\right]_{q}
$$

The row-space partition

Recall: $\quad \mathscr{P}=\left(P_{i}\right)_{i \in I}, \quad \widehat{\mathscr{P}}=\left(Q_{j}\right)_{j \in J}$ invariant partitions. Then $K(\mathscr{P} ; i, j):=\sum_{w \in Q_{j}} \psi_{\xi}(w)(v), \quad$ where v is any vector in P_{i}
(independent of ξ).

Theorem (Gluesing-Luerssen, R.)

For $U, V \leq \mathbb{F}_{q}^{m}$ we have

$$
K\left(\mathscr{P}^{\mathrm{rs}} ; U, V\right)=\sum_{t=0}^{m}(-1)^{\operatorname{dim}(U)-t} q^{n t+\binom{\operatorname{dim}(U)-t}{2}}\left[\begin{array}{c}
\operatorname{dim}\left(U \cap V^{\perp}\right) \\
t
\end{array}\right]_{q} .
$$

Ingredients of the proof: some combinatorics and character theory.
Let \mathscr{L} be the lattice of subspaces of \mathbb{F}_{q}^{m}. Consider the map

$$
\sigma: \mathbb{F}_{q}^{n \times m} \rightarrow \mathscr{L}, \quad \sigma(M):=\mathrm{rs}(M)
$$

This map is a regular support in the sense of Duality of codes supported... (R.'17). This connection allows one to evaluate character sums using Mœbius inversion.

The row-space partition

MacWilliams identities for the row-space distribution:
Corollary (Gluesing-Luerssen, R.)
Let $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$ be a code. For all $V \leq \mathbb{F}_{q}^{m}$ we have

$$
\mathscr{P}^{\mathrm{rs}}\left(\mathscr{C}^{\perp}, V\right)=\frac{1}{|\mathscr{C}|} \sum_{U \leq \mathbb{F}_{q}^{m}} \mathscr{P}^{\mathrm{rs}}(\mathscr{C}, U) \sum_{t=0}^{m}(-1)^{\operatorname{dim}(U)-t} q^{n t+\binom{\operatorname{dim}(U)-t}{2}}\left[\begin{array}{c}
\operatorname{dim}\left(U \cap V^{\perp}\right) \\
t
\end{array}\right]_{q} .
$$

The pivot partition

$\mathscr{P}{ }^{\text {piv }}$ partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices in the RRE form. We have:

$$
\left|\mathscr{P}^{\mathrm{piv}}\right|=\sum_{r=0}^{m}\binom{m}{r}=2^{m}
$$

The pivot partition

$\mathscr{P}{ }^{\text {piv }}$ partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices in the RRE form. We have:

$$
\left|\mathscr{P}^{\text {piv }}\right|=\sum_{r=0}^{m}\binom{m}{r}=2^{m}
$$

Example:

$$
M=\left(\begin{array}{llllll}
1 & \bullet & 0 & 0 & \bullet & \bullet \\
0 & 0 & 1 & 0 & \bullet & \bullet \\
0 & 0 & 0 & 1 & \bullet & \bullet
\end{array}\right)
$$

$$
\operatorname{piv}(M)=(1,3,4)
$$

The pivot partition

$\mathscr{P}{ }^{\text {piv }}$ partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices in the RRE form. We have:

$$
\left|\mathscr{P}^{\text {piv }}\right|=\sum_{r=0}^{m}\binom{m}{r}=2^{m}
$$

Example:

$$
M=\left(\begin{array}{cccccc}
1 & \bullet & 0 & 0 & \bullet & \bullet \\
0 & 0 & 1 & 0 & \bullet & \bullet \\
0 & 0 & 0 & 1 & \bullet & \bullet
\end{array}\right) \quad \operatorname{piv}(M)=(1,3,4)
$$

Notation

Let $\quad \Pi=\left\{\left(j_{1}, \ldots, j_{r}\right) \mid 1 \leq r \leq m, \quad 1 \leq j_{1}<j_{2}<\cdots<j_{r} \leq m\right\} \cup\{()\}$.
Then

$$
\mathscr{P}^{\text {piv }}=\left(P_{\lambda}\right)_{\lambda \in \Pi .} .
$$

We treat the elements of Π as sets or as lists, depending on what is more convenient.

The pivot partition

Theorem (Gluesing-Luerssen, R.)

$\mathscr{P}^{\text {piv }}$ is Fourier-reflexive, but not self-dual ($\widehat{\mathscr{P}^{\text {piv }}} \neq \mathscr{P}^{\text {piv }}$).
How does $\widehat{\mathscr{P} \text { piv }}$ look like?

The pivot partition

Theorem (Gluesing-Luerssen, R.)

$\mathscr{P}^{\text {piv }}$ is Fourier-reflexive, but not self-dual ($\widehat{\mathscr{P P}^{\text {piv }}} \neq \mathscr{P}^{\text {piv }}$).
How does $\widehat{\mathscr{P} \text { piv }}$ look like?
Theorem (Gluesing-Luerssen, R.)
$\widehat{\mathscr{P} \text { piv }}=\mathscr{P}^{\text {rpiv }}$, the reverse pivot partition.
$\mathscr{P}^{r p i v}$ partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices of the RRE form computed from the right.

The pivot partition

Theorem (Gluesing-Luerssen, R.)

$\mathscr{P}^{\text {piv }}$ is Fourier-reflexive, but not self-dual ($\widehat{\mathscr{P} \text { piv }} \neq \mathscr{P}^{\text {piv }}$).
How does $\widehat{\mathscr{P} \text { piv look like? }}$
Theorem (Gluesing-Luerssen, R.)
$\widehat{\mathscr{P} \text { piv }}=\mathscr{P}^{\text {rpiv }}$, the reverse pivot partition.
$\mathscr{P}^{r p i v}$ partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices of the RRE form computed from the right.

Remark

Let

$$
S=\left(\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right) .
$$

Then $r-\operatorname{RREF}(M)=(\operatorname{RREF}(M S)) S$.

The pivot partition

Definition

A Ferrers diagram is a subset $\mathscr{F} \subseteq[n] \times[m]$ that satisfies the following:
(1) if $(i, j) \in \mathscr{F}$ and $j<m$, then $(i, j+1) \in \mathscr{F}$ (right aligned),
(2) if $(i, j) \in \mathscr{F}$ and $i>1$, then $(i-1, j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$. E.g.

The pivot partition

Definition

A Ferrers diagram is a subset $\mathscr{F} \subseteq[n] \times[m]$ that satisfies the following:
(1) if $(i, j) \in \mathscr{F}$ and $j<m$, then $(i, j+1) \in \mathscr{F}$ (right aligned),
(2) if $(i, j) \in \mathscr{F}$ and $i>1$, then $(i-1, j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$.
E.g.

We denote by $\mathbb{F}_{q}[\mathscr{F}]$ the space of matrices supported on \mathscr{F}, and let

$$
P_{r}(\mathscr{F}):=\left\{M \in \mathbb{F}_{q}[\mathscr{F}] \mid \operatorname{rk}(M)=r\right\} .
$$

The pivot partition

Definition

A Ferrers diagram is a subset $\mathscr{F} \subseteq[n] \times[m]$ that satisfies the following:
(1) if $(i, j) \in \mathscr{F}$ and $j<m$, then $(i, j+1) \in \mathscr{F}$ (right aligned),
(2) if $(i, j) \in \mathscr{F}$ and $i>1$, then $(i-1, j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$. E.g.

We denote by $\mathbb{F}_{q}[\mathscr{F}]$ the space of matrices supported on \mathscr{F}, and let

$$
P_{r}(\mathscr{F}):=\left\{M \in \mathbb{F}_{q}[\mathscr{F}] \mid \operatorname{rk}(M)=r\right\} .
$$

We can express the Krawtchouk coefficients of \mathscr{P} piv in terms of $P_{r}(\mathscr{F})$, for certain r and for a suitable diagram \mathscr{F}.

The pivot partition

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$
\sigma=[m] \backslash \mu, \quad \lambda \cap \sigma=\left(\lambda_{\alpha_{1}}, \ldots, \lambda_{\alpha_{x}}\right), \quad \mu \backslash \lambda=\left(\mu_{\beta_{1}}, \ldots, \mu_{\beta_{y}}\right)
$$

Furthermore, set

$$
z_{j}=\left|\left\{i \in[x] \mid \lambda_{\alpha_{i}}<\mu_{\beta_{j}}\right\}\right| \text { for } j \in[y], \quad \mathscr{F}=\left[z_{1}, \ldots, z_{y}\right] .
$$

The pivot partition

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$
\sigma=[m] \backslash \mu, \quad \lambda \cap \sigma=\left(\lambda_{\alpha_{1}}, \ldots, \lambda_{\alpha_{x}}\right), \quad \mu \backslash \lambda=\left(\mu_{\beta_{1}}, \ldots, \mu_{\beta_{y}}\right)
$$

Furthermore, set

$$
z_{j}=\left|\left\{i \in[x] \mid \lambda_{\alpha_{i}}<\mu_{\beta_{j}}\right\}\right| \text { for } j \in[y], \quad \mathscr{F}=\left[z_{1}, \ldots, z_{y}\right] .
$$

Then

$$
K\left(\mathscr{P}^{\text {piv }} ; \lambda, \mu\right)=\sum_{t=0}^{m}(-1)^{|\lambda|-t} q^{n t+\binom{|\lambda|-t}{2}} \sum_{r=0}^{|\lambda \cap \sigma|} P_{r}(\mathscr{F})\left[\begin{array}{c}
|\lambda \cap \sigma|-r \\
t
\end{array}\right]_{q} .
$$

The pivot partition

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$
\sigma=[m] \backslash \mu, \quad \lambda \cap \sigma=\left(\lambda_{\alpha_{1}}, \ldots, \lambda_{\alpha_{x}}\right), \quad \mu \backslash \lambda=\left(\mu_{\beta_{1}}, \ldots, \mu_{\beta_{y}}\right)
$$

Furthermore, set

$$
z_{j}=\left|\left\{i \in[x] \mid \lambda_{\alpha_{i}}<\mu_{\beta_{j}}\right\}\right| \text { for } j \in[y], \quad \mathscr{F}=\left[z_{1}, \ldots, z_{y}\right] .
$$

Then

$$
K\left(\mathscr{P}^{\text {piv }} ; \lambda, \mu\right)=\sum_{t=0}^{m}(-1)^{|\lambda|-t} q^{n t+\binom{|\lambda|-t}{2}} \sum_{r=0}^{|\lambda \cap \sigma|} P_{r}(\mathscr{F})\left[\begin{array}{c}
|\lambda \cap \sigma|-r \\
t
\end{array}\right]_{q} .
$$

Therefore, $K\left(\mathscr{P}^{\text {piv }} ; \lambda, \mu\right)$ can be expressed in terms of the rank-distribution of $\mathbb{F}_{q}(\mathscr{F})$ for a suitable $\mathscr{F} \quad \rightarrow$ rook theory

q-Rook Polynomials

Definition

The q-rook polynomial associated with \mathscr{F} and $r \geq 0$ is

$$
R_{r}(\mathscr{F})=\sum_{C \in \operatorname{NAR}_{r}(\mathscr{F})} q^{\operatorname{inv}(C, \mathscr{F})} \in \mathbb{Z}[q]
$$

where:

- $\operatorname{NAR}_{r}(\mathscr{F})$ is the set of all placements of r non-attacking rooks on \mathscr{F} (non-attacking means that no two rooks are in the same column, and no two are in the same row)
- $\operatorname{inv}(C, \mathscr{F}) \in \mathbb{N}$ is computed as shown on the blackboard

q-Rook Polynomials

Definition

The q-rook polynomial associated with \mathscr{F} and $r \geq 0$ is

$$
R_{r}(\mathscr{F})=\sum_{C \in \operatorname{NAR}_{r}(\mathscr{F})} q^{\operatorname{inv}(C, \mathscr{F})} \in \mathbb{Z}[q]
$$

where:

- $\operatorname{NAR}_{r}(\mathscr{F})$ is the set of all placements of r non-attacking rooks on \mathscr{F} (non-attacking means that no two rooks are in the same column, and no two are in the same row)
- $\operatorname{inv}(C, \mathscr{F}) \in \mathbb{N}$ is computed as shown on the blackboard

Theorem (Haglund)

For any Ferrers diagram \mathscr{F} and any $r \geq 0$ we have

$$
P_{r}(\mathscr{F})=(q-1)^{r} q^{|\mathscr{F}|-r} R_{r}(\mathscr{F})_{\mid q^{-1}}
$$

in the ring $\mathbb{Z}\left[q, q^{-1}\right]$.
Natural task: find an explicit expression for $R_{r}(\mathscr{F})$.

q-Rook Polynomials

An explicit formula for $R_{r}(\mathscr{F})$:

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$ be an $n \times m$-Ferrers diagram. For $k \in[m]$ define $a_{k}=c_{k}-k+1$.
For $j \in[m]$ let $\sigma_{j} \in \mathbb{Q}\left[x_{1}, \ldots, x_{m}\right]$ be the $j^{\text {th }}$ elementary symmetric polynomial in m indeterminates $\left(\sigma_{0}=1, \ldots, \sigma_{m}=x_{1} \cdots x_{m}\right)$.

Then

$$
R_{r}(q)=\frac{q^{\binom{r+1}{2}-r m+\operatorname{area}(\mathscr{F})}(-1)^{m-r}}{(1-q)^{r} \prod_{k=1}^{m-r}\left(1-q^{k}\right)} \sum_{t=m-r}^{m}(-1)^{t} \sigma_{m-t}\left(q^{-a_{1}}, \ldots, q^{-a_{m}}\right) \prod_{j=0}^{m-r-1}\left(1-q^{t-j}\right)
$$

q-Rook Polynomials

An explicit formula for $R_{r}(\mathscr{F})$:

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$ be an $n \times m$-Ferrers diagram. For $k \in[m]$ define $a_{k}=c_{k}-k+1$.
For $j \in[m]$ let $\sigma_{j} \in \mathbb{Q}\left[x_{1}, \ldots, x_{m}\right]$ be the $j^{\text {th }}$ elementary symmetric polynomial in m indeterminates $\left(\sigma_{0}=1, \ldots, \sigma_{m}=x_{1} \cdots x_{m}\right)$.

Then

$$
R_{r}(q)=\frac{q^{\binom{r+1}{2}-r m+\operatorname{area}(\mathscr{F})}(-1)^{m-r}}{(1-q)^{r} \prod_{k=1}^{m-r}\left(1-q^{k}\right)} \sum_{t=m-r}^{m}(-1)^{t} \sigma_{m-t}\left(q^{-a_{1}}, \ldots, q^{-a_{m}}\right) \prod_{j=0}^{m-r-1}\left(1-q^{t-j}\right)
$$

Combining this with Haglund's theorem we find an explicit expression for $P_{r}(\mathscr{F})$.
Proof is long and technical.

q-Rook Polynomials

A different approach: compute $P_{r}(\mathscr{F})$ directly. Notation: $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$.
Theorem (Gluesing-Luerssen, R.)

$$
\operatorname{Pr}(\mathscr{F})=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} q^{r m-\sum_{j=1}^{r} i_{j}} \prod_{j=1}^{r}\left(q^{c_{i j}-j+1}-1\right) .
$$

Proof is short.

q-Rook Polynomials

A different approach: compute $P_{r}(\mathscr{F})$ directly. Notation: $\mathscr{F}=\left[c_{1}, \ldots, c_{m}\right]$.

Theorem (Gluesing-Luerssen, R.)

$$
\operatorname{Pr}(\mathscr{F})=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} q^{r m-\sum_{j=1}^{r} i_{j}} \prod_{j=1}^{r}\left(q^{c_{i j}-j+1}-1\right) .
$$

Proof is short.

But inverting Haglund's theorem we also find a simple explicit formula for $R_{r}(\mathscr{F})$!
Corollary (Gluesing-Luerssen, R.)

$$
R_{r}(\mathscr{F})=\frac{q^{\sum_{j=1}^{m} c_{j}-r m} \sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} \prod_{j=1}^{r}\left(q^{i_{j}+j-c_{j}-1}-q^{i_{j}}\right)}{(1-q)^{r}} .
$$

q-Rook Polynomials

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$
S_{m+1, r}=q^{r-1} S_{m, r-1}+\frac{q^{r}-1}{q-1} S_{m, r}
$$

with initial conditions $S_{0,0}(q)=1$ and $S_{m, r}(q)=0$ for $r<0$ or $r>m$.

q-Rook Polynomials

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$
S_{m+1, r}=q^{r-1} S_{m, r-1}+\frac{q^{r}-1}{q-1} S_{m, r}
$$

with initial conditions $S_{0,0}(q)=1$ and $S_{m, r}(q)=0$ for $r<0$ or $r>m$.

Theorem (Garsia, Remmel)

$$
S_{m+1, m+1-r}=R_{r}(\mathscr{F})
$$

where $\mathscr{F}=[1, \ldots, m]$ is the upper-triangular $m \times m$ Ferrers board.

q-Rook Polynomials

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$
S_{m+1, r}=q^{r-1} S_{m, r-1}+\frac{q^{r}-1}{q-1} S_{m, r}
$$

with initial conditions $S_{0,0}(q)=1$ and $S_{m, r}(q)=0$ for $r<0$ or $r>m$.

Theorem (Garsia, Remmel)

$$
S_{m+1, m+1-r}=R_{r}(\mathscr{F})
$$

where $\mathscr{F}=[1, \ldots, m]$ is the upper-triangular $m \times m$ Ferrers board.
Theorem (Gluesing-Luerssen, R.)

$$
S_{m+1, m+1-r}=\frac{q^{\binom{m+1}{2}-r m} \sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} \prod_{j=1}^{r}\left(q^{j-1}-q^{i_{j}}\right)}{(1-q)^{r}} \quad \text { for } 1 \leq r \leq m+1
$$

q-Rook Polynomials

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$
S_{m+1, r}=q^{r-1} S_{m, r-1}+\frac{q^{r}-1}{q-1} S_{m, r}
$$

with initial conditions $S_{0,0}(q)=1$ and $S_{m, r}(q)=0$ for $r<0$ or $r>m$.

Theorem (Garsia, Remmel)

$$
S_{m+1, m+1-r}=R_{r}(\mathscr{F})
$$

where $\mathscr{F}=[1, \ldots, m]$ is the upper-triangular $m \times m$ Ferrers board.

Theorem (Gluesing-Luerssen, R.)

$$
S_{m+1, m+1-r}=\frac{q^{\binom{m+1}{2}-r m} \sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} \prod_{j=1}^{r}\left(q^{j-1}-q^{i_{j}}\right)}{(1-q)^{r}} \quad \text { for } 1 \leq r \leq m+1
$$

Thank you very much!

