Partitions of Matrix Spaces and q-Rook Polynomials

Alberto Ravagnani

University College Dublin

Neuchâtel, Feb. 2019

joint work with H. Gluesing-Luerssen

Feb. 2019 0 / 19

SAC

イロト イロト イヨト イヨト

A classical result in coding theory:

Theorem (MacWilliams)

Let $\mathscr{C} \leq \mathbb{F}_q^n$ be a code with the Hamming metric. Then for all $0 \leq j \leq n$ we have

$$W^{\mathsf{H}}_{j}(\mathscr{C}^{\perp}) = \sum_{i=0}^{n} \sum_{\ell=0}^{j} (-1)^{\ell} (q-1)^{j-\ell} {i \choose \ell} {n-i \choose j-\ell} W^{\mathsf{H}}_{i}(\mathscr{C}).$$

These identities are invertible.

イロト イヨト イヨト - ヨトー

A classical result in coding theory:

Theorem (MacWilliams)

Let $\mathscr{C} \leq \mathbb{F}_q^n$ be a code with the Hamming metric. Then for all $0 \leq j \leq n$ we have

$$W^{\mathsf{H}}_{j}(\mathscr{C}^{\perp}) = \sum_{i=0}^{n} \sum_{\ell=0}^{j} (-1)^{\ell} (q-1)^{j-\ell} {i \choose \ell} {n-i \choose j-\ell} W^{\mathsf{H}}_{i}(\mathscr{C}).$$

These identities are invertible.

Generalizations of this result have been extensively studied in various contexts:

- association schemes
- finite abelian groups
- posets and lattices

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Group Characters

Definition

Let (G, +) be a finite abelian group. The character group of G is

$$\widehat{G} = \{ ext{group homomorphisms } \chi : G o \mathbb{C}^* \}$$

endowed with point-wise multiplication:

 $\chi_1\cdot\chi_2\ (g)=\chi_1(g)\cdot\chi_2(g) \quad \text{for all } g\in G.$

Group Characters

Definition

Let (G, +) be a finite abelian group. The character group of G is

$$\widehat{G} = \{ \mathsf{group} \ \mathsf{homomorphisms} \ \chi : G \to \mathbb{C}^* \}$$

endowed with point-wise multiplication:

$$\chi_1\cdot\chi_2\ (g)=\chi_1(g)\cdot\chi_2(g) \quad ext{for all } g\in G.$$

We focus on a special situation:

- (G, +) = (V, +) is the additive group of a finite-dimensional linear space over \mathbb{F}_q
- V is endowed with a given scalar product $\langle \cdot \cdot
 angle$

Remark

 (\widehat{V},\cdot) has a natural structure of \mathbb{F}_q -linear space via

$$a\chi(v) = \chi(av), \qquad a \in \mathbb{F}_q, \ v \in V.$$

Moreover, $\dim(V) = \dim(\widehat{V})$.

< ロ ト < 回 ト < 三 ト < 三 ト</p>

We focus on a special situation:

- (G,+) = (V,+) is the additive group of a finite-dimensional linear space over \mathbb{F}_q
- V is endowed with a given scalar product $\langle \cdot \cdot \rangle : V \times V \to \mathbb{F}_q$

Remark

 $\langle\cdot\,\cdot
angle$ can be used to identify the spaces (V,+) and (\widehat{V},\cdot) as follows.

Fix a non-trivial character $\xi:\mathbb{F}_q\to\mathbb{C}^*$ (it exists) and let

$$\psi_{\xi}:V o \widehat{V},\qquad \psi_{\xi}(v)(w)=\xi(\langle v,w
angle) ext{ for all }v,w\in V.$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We focus on a special situation:

- (G,+) = (V,+) is the additive group of a finite-dimensional linear space over \mathbb{F}_q
- V is endowed with a given scalar product $\langle \cdot \cdot \rangle : V \times V \to \mathbb{F}_q$

Remark

 $\langle\cdot\,\cdot
angle$ can be used to identify the spaces (V,+) and (\widehat{V},\cdot) as follows.

Fix a non-trivial character $\xi: \mathbb{F}_q \to \mathbb{C}^*$ (it exists) and let

$$\psi_{\xi}:V o \widehat{V},\qquad \psi_{\xi}(v)(w)=\xi(\langle v,w
angle) ext{ for all }v,w\in V.$$

Theorem (Folklore)

 ψ_{ξ} is an \mathbb{F}_{q} -isomorphism of linear spaces whenever ξ is non-trivial.

Different choices of ξ give different identifications. However, all the objects we are interested in will not depend on the choice of ξ .

Feb. 2019 3 / 19

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つへで

A partition $\mathscr{P} = \{P_i\}_{i \in I}$ of V is **invariant** if $aP_i = P_i$ for all $i \in I$ and $a \in \mathbb{F}_q \setminus \{0\}$.

Example

Partitioning the elements of \mathbb{F}_{q}^{n} according to their Hamming weight yields \mathscr{P}^{H} .

590

イロト イヨト イヨト イヨト 二日

A partition $\mathscr{P} = \{P_i\}_{i \in I}$ of V is **invariant** if $aP_i = P_i$ for all $i \in I$ and $a \in \mathbb{F}_q \setminus \{0\}$.

Example

Partitioning the elements of \mathbb{F}_{a}^{n} according to their Hamming weight yields \mathscr{P}^{H} .

Definition

Let $\mathscr{P} = \{P_i\}_{i \in I}$ be an invariant partition of V $(P_i \neq \emptyset$ for all $i \in I)$.

The **dual** of \mathscr{P} is the partition $\widehat{\mathscr{P}}$ of V defined by the equivalence relation

$$w \sim w' \iff \sum_{v \in P_i} \psi_{\xi}(v)(w) = \sum_{v \in P_i} \psi_{\xi}(v)(w') \text{ for all } i \in I.$$

(recall: $\psi_{\xi}: (V, +) \to (\widehat{V}, \cdot) \mathbb{F}_q$ -isomorphism).

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つへで

A partition $\mathscr{P} = \{P_i\}_{i \in I}$ of V is **invariant** if $aP_i = P_i$ for all $i \in I$ and $a \in \mathbb{F}_q \setminus \{0\}$.

Example

Partitioning the elements of \mathbb{F}_{a}^{n} according to their Hamming weight yields \mathscr{P}^{H} .

Definition

Let $\mathscr{P} = \{P_i\}_{i \in I}$ be an invariant partition of V $(P_i \neq \emptyset \text{ for all } i \in I)$.

The **dual** of \mathscr{P} is the partition $\widehat{\mathscr{P}}$ of V defined by the equivalence relation

$$w \sim w' \iff \sum_{v \in P_i} \psi_{\xi}(v)(w) = \sum_{v \in P_i} \psi_{\xi}(v)(w') \text{ for all } i \in I.$$

(recall: $\psi_{\xi}: (V, +) \rightarrow (\widehat{V}, \cdot) \mathbb{F}_{q}$ -isomorphism).

I am using ξ to define $\widehat{\mathscr{P}}$.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つへで

A partition $\mathscr{P} = \{P_i\}_{i \in I}$ of V is **invariant** if $aP_i = P_i$ for all $i \in I$ and $a \in \mathbb{F}_q \setminus \{0\}$.

Example

Partitioning the elements of \mathbb{F}_a^n according to their Hamming weight yields \mathscr{P}^{H} .

Definition

Let $\mathscr{P} = \{P_i\}_{i \in I}$ be an invariant partition of V $(P_i \neq \emptyset \text{ for all } i \in I)$.

The **dual** of \mathscr{P} is the partition $\widehat{\mathscr{P}}$ of V defined by the equivalence relation

$$w \sim w' \iff \sum_{v \in P_i} \psi_{\xi}(v)(w) = \sum_{v \in P_i} \psi_{\xi}(v)(w') \text{ for all } i \in I.$$

(recall: $\psi_{\mathcal{E}} : (V, +) \to (\widehat{V}, \cdot) \quad \mathbb{F}_q$ -isomorphism).

$$igtleacologo$$
 I am using ξ to define $\widehat{\mathscr{P}}$. However,

Proposition

```
\widehat{\mathscr{P}} does not depend on \xi, if \mathscr{P} is invariant.
```

DQA

イロト イヨト イヨト - ヨトー

DATA:

- V an \mathbb{F}_q -space of finite dimension
- $\langle\cdot\cdot
 angle$ a scalar product on V
- $\mathscr{P} = \{P_i\}_{i \in I}$ an invariant partition of V

CONSTRUCTION: the dual partition $\widehat{\mathscr{P}} = \{Q_j\}_{j \in J}$ of V (which is invariant as well)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □ ▶ ④ ヘ ⊙

DATA:

- V an \mathbb{F}_q -space of finite dimension
- $\langle\cdot\cdot
 angle$ a scalar product on V
- $\mathscr{P} = \{P_i\}_{i \in I}$ an invariant partition of V

CONSTRUCTION: the dual partition $\widehat{\mathscr{P}} = \{Q_i\}_{i \in J}$ of V (which is invariant as well)

Definition

A code is an \mathbb{F}_q -subspace of V. Its dual is

$$\mathscr{C}^{\perp} = \{ w \in V \mid \langle v, w \rangle = 0 ext{ for all } v \in \mathscr{C} \} \leq V.$$

Define:

- the \mathscr{P} -distribution of \mathscr{C} : $\mathscr{P}(\mathscr{C},i) = |\mathscr{C} \cap P_i|, i \in I.$
- the $\widehat{\mathscr{P}}$ -distribution of \mathscr{C}^{\perp} : $\widehat{\mathscr{P}}(\mathscr{C}^{\perp}, j) = |\mathscr{C}^{\perp} \cap Q_j|, j \in J.$

Under certain conditions, MacWilliams-type identities hold for the \mathscr{P} - and $\widehat{\mathscr{P}}$ -partition.

Sac

・ ロ ト ス 四 ト ス ヨ ト ス ヨ ト

MacWilliams-type Identities

We say that \mathscr{P} is Fourier-reflexive if $|\mathscr{P}| = |\widehat{\mathscr{P}}|$ and self-dual if $\widehat{\mathscr{P}} = \mathscr{P}$. (self-dual \implies Fourier-reflexive)

590

・ロト ・ 四ト ・ ヨト ・ ヨト

MacWilliams-type Identities

We say that \mathscr{P} is **Fourier-reflexive** if $|\mathscr{P}| = |\widehat{\mathscr{P}}|$ and **self-dual** if $\widehat{\mathscr{P}} = \mathscr{P}$. (self-dual \Longrightarrow Fourier-reflexive)

Theorem (Generalized MacWilliams Identities)

Let $\mathscr{P} = \{P_i\}_{i \in I}$ be invariant and Fourier-reflexive.

Let $\widehat{\mathscr{P}} = \{Q_j\}_{j \in J}$. Let $\mathscr{C} \leq V$ be a code. We have

$$\widehat{\mathscr{P}}(\mathscr{C}^{\perp},j) = \frac{1}{|\mathscr{C}|} \sum_{i \in I} \mathcal{K}(\mathscr{P};i,j) \cdot \mathscr{P}(\mathscr{C},i),$$

where $K(\mathscr{P}; i, j)$ are suitable numbers called **Krawtchouk coefficients**. Moreover, the matrix of the $K(\mathscr{P}; i, j)$ is of size $|I| \times |J| = |I| \times |I|$ and invertible.

SQR

MacWilliams-type Identities

We say that \mathscr{P} is **Fourier-reflexive** if $|\mathscr{P}| = |\widehat{\mathscr{P}}|$ and **self-dual** if $\widehat{\mathscr{P}} = \mathscr{P}$. (self-dual \Longrightarrow Fourier-reflexive)

Theorem (Generalized MacWilliams Identities)

Let $\mathscr{P} = \{P_i\}_{i \in I}$ be invariant and Fourier-reflexive.

Let $\widehat{\mathscr{P}} = \{Q_j\}_{j \in J}$. Let $\mathscr{C} \leq V$ be a code. We have

$$\widehat{\mathscr{P}}(\mathscr{C}^{\perp},j) = \frac{1}{|\mathscr{C}|} \sum_{i \in I} \mathcal{K}(\mathscr{P};i,j) \cdot \mathscr{P}(\mathscr{C},i),$$

where $K(\mathscr{P}; i, j)$ are suitable numbers called **Krawtchouk coefficients**. Moreover, the matrix of the $K(\mathscr{P}; i, j)$ is of size $|I| \times |J| = |I| \times |I|$ and invertible.

Definition

$$\mathcal{K}(\mathscr{P}; i, j) = \sum_{w \in Q_j} \psi_{\xi}(w)(v), \text{ where } v \text{ is any vector in } P_i.$$

Again, this does not depend on ξ for invariant partitions.

Feb. 2019 6 / 19

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つへで

Problems

Given V with $\langle \cdot \cdot \rangle$,

- Construct Fourier-reflexive partitions ${\mathscr P}$
- Describe $\widehat{\mathscr{P}}$ and decide if $\widehat{\mathscr{P}} = \mathscr{P}$ (self-duality)
- Compute $K(\mathcal{P}; i, j)$

<ロト <回ト < 回ト < 回ト -

Problems

Given V with $\langle \cdot \cdot \rangle$,

- Construct Fourier-reflexive partitions ${\mathscr P}$
- Describe $\widehat{\mathscr{P}}$ and decide if $\widehat{\mathscr{P}} = \mathscr{P}$ (self-duality)
- Compute $K(\mathcal{P}; i, j)$

Theorem (essentially Delsarte)

The rank partition on $\mathbb{F}_{a}^{n \times m}$ is self-dual of size m+1. Moreover,

$$\mathcal{K}(\mathscr{P}^{\mathsf{rk}};i,j) = \sum_{\ell=0}^{m} (-1)^{j-\ell} q^{n\ell+\binom{j-\ell}{2}} \begin{bmatrix} m-\ell \\ m-j \end{bmatrix}_{q} \begin{bmatrix} m-i \\ \ell \end{bmatrix}_{q}$$

We concentrate on the matrix space $\mathbb{F}_{q}^{n \times m}$ with $n \geq m$ endowed with the **trace product**:

$$\langle M, N \rangle = \operatorname{Tr}(MN^t).$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Other partitions

We study:

- \bullet the row-space partition $\mathscr{P}^{\rm rs}$
- the pivot partition $\mathscr{P}^{\mathsf{piv}}$

These are invariant partitions of $\mathbb{F}_{q}^{n \times m}$.

DQC

<ロト <回ト < 三ト < 三ト

Other partitions

We study:

- the row-space partition $\mathscr{P}^{\mathsf{rs}}$
- the pivot partition $\mathscr{P}^{\mathsf{piv}}$

These are invariant partitions of $\mathbb{F}_{q}^{n \times m}$.

Results (Gluesing-Luerssen, R.):

- $\bullet \ \mathscr{P}^{\rm rs} \ {\rm is \ self-dual}$
- explicit formula for the Krawtchouk coefficients of $\mathscr{P}^{\mathrm{rs}}$
- the pivot partition $\mathscr{P}^{\mathsf{piv}}$ is Fourier-reflexive (not self-dual)
- \bullet connection between the Krawtchouk coefficients of $\mathscr{P}^{\mathsf{piv}}$ and rook theory
- \bullet notions of extremality from $\mathscr{P}^{\mathsf{rs}}$ and $\mathscr{P}^{\mathsf{piv}},$ and properties of extremal codes
- MacWilliams extension theorem fails for these partitions

・ コ ト ・ 雪 ト ・ 目 ト

 $\mathscr{P}^{\mathsf{rs}}$ partitions the elements of $\mathbb{F}_q^{n \times m}$ according to their row-spaces. We have:

$$|\mathscr{P}^{\mathsf{rs}}| = \sum_{i=0}^{m} \begin{bmatrix} m \\ i \end{bmatrix}_{q}$$
 (recall: $m \le n$)

2 Feb. 2019 9/19

996

< ロ > < 四 > < 三 > < 三 > 、

 \mathscr{P}^{rs} partitions the elements of $\mathbb{F}_{a}^{n \times m}$ according to their row-spaces. We have:

$$|\mathscr{P}^{\mathsf{rs}}| = \sum_{i=0}^{m} \begin{bmatrix} m \\ i \end{bmatrix}_{q}$$
 (recall: $m \le n$)

Theorem (Gluesing-Luerssen, R.)

 \mathscr{P}^{rs} is self-dual, i.e., $\widehat{\mathscr{P}^{rs}} = \mathscr{P}^{rs}$.

Tool in the proof: group actions.

$$\rho: \mathsf{GL}_n(\mathbb{F}_q) \times \mathbb{F}_q^{n \times m} \to \mathbb{F}_q^{n \times m}, \qquad (G, M) \mapsto GM$$

Then the blocks of \mathscr{P}^{rs} are the orbits of ρ , from which Fourier-reflexivity follows easily.

590

イロト イヨト イヨト イヨト 二日

 \mathscr{P}^{rs} partitions the elements of $\mathbb{F}_{a}^{n \times m}$ according to their row-spaces. We have:

$$|\mathscr{P}^{\mathsf{rs}}| = \sum_{i=0}^{m} \begin{bmatrix} m \\ i \end{bmatrix}_{q}$$
 (recall: $m \le n$)

Theorem (Gluesing-Luerssen, R.)

 \mathscr{P}^{rs} is self-dual, i.e., $\widehat{\mathscr{P}^{rs}} = \mathscr{P}^{rs}$.

Tool in the proof: group actions.

$$\rho: \mathsf{GL}_n(\mathbb{F}_q) \times \mathbb{F}_q^{n \times m} \to \mathbb{F}_q^{n \times m}, \qquad (G, M) \mapsto GM$$

Then the blocks of \mathscr{P}^{rs} are the orbits of ρ , from which Fourier-reflexivity follows easily.

This argument does not give a formula for the Krawtchouk coefficients.

イロト イヨト イヨト イヨト 二日

Recall: $\mathscr{P} = (P_i)_{i \in I}, \quad \widehat{\mathscr{P}} = (Q_j)_{j \in J}$ invariant partitions. Then $\mathcal{K}(\mathscr{P}; i, j) := \sum_{w \in Q_j} \psi_{\xi}(w)(v), \quad \text{where } v \text{ is any vector in } P_i$

(independent of ξ).

Recall: $\mathscr{P} = (P_i)_{i \in I}, \quad \widehat{\mathscr{P}} = (Q_j)_{j \in J}$ invariant partitions. Then $\mathcal{K}(\mathscr{P}; i, j) := \sum_{w \in Q_j} \psi_{\xi}(w)(v), \quad \text{where } v \text{ is any vector in } P_i$

(independent of ξ).

Theorem (Gluesing-Luerssen, R.)

For $U, V \leq \mathbb{F}_q^m$ we have

$$\mathcal{K}(\mathscr{P}^{\mathsf{rs}}; U, V) = \sum_{t=0}^{m} (-1)^{\dim(U)-t} q^{nt+\binom{\dim(U)-t}{2}} \begin{bmatrix} \dim(U \cap V^{\perp}) \\ t \end{bmatrix}_{q}$$

Recall: $\mathscr{P} = (P_i)_{i \in I}, \quad \widehat{\mathscr{P}} = (Q_j)_{j \in J}$ invariant partitions. Then $\mathcal{K}(\mathscr{P}; i, j) := \sum_{w \in Q_j} \psi_{\xi}(w)(v), \quad \text{where } v \text{ is any vector in } P_i$

(independent of ξ).

Theorem (Gluesing-Luerssen, R.)

For $U, V \leq \mathbb{F}_q^m$ we have

$$\mathcal{K}(\mathscr{P}^{\mathsf{rs}}; U, V) = \sum_{t=0}^{m} (-1)^{\dim(U)-t} q^{nt + \binom{\dim(U)-t}{2}} \binom{\dim(U \cap V^{\perp})}{t}_{q}$$

Ingredients of the proof: some combinatorics and character theory.

Let \mathscr{L} be the lattice of subspaces of \mathbb{F}_q^m . Consider the map

$$\sigma: \mathbb{F}_q^{n \times m} \to \mathscr{L}, \qquad \sigma(M) := \mathrm{rs}(M).$$

This map is a **regular support** in the sense of *Duality of codes supported*... (R.'17). This connection allows one to evaluate character sums using Mœbius inversion.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Eeb 2019

10/19

MacWilliams identities for the row-space distribution:

Corollary (Gluesing-Luerssen, R.)
Let
$$\mathscr{C} \leq \mathbb{F}_q^{n \times m}$$
 be a code. For all $V \leq \mathbb{F}_q^m$ we have
 $\mathscr{P}^{\mathsf{rs}}(\mathscr{C}^{\perp}, V) = \frac{1}{|\mathscr{C}|} \sum_{U \leq \mathbb{F}_q^m} \mathscr{P}^{\mathsf{rs}}(\mathscr{C}, U) \sum_{t=0}^m (-1)^{\dim(U)-t} q^{nt+\binom{\dim(U)-t}{2}} \begin{bmatrix} \dim(U \cap V^{\perp}) \\ t \end{bmatrix}_q.$

590

イロト イロト イヨト イヨト

 \mathscr{P}^{piv} partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices in the RRE form. We have:

$$\mathscr{P}^{\mathsf{piv}}| = \sum_{r=0}^{m} \binom{m}{r} = 2^{m}.$$

DQC

イロト イロト イヨト イヨト

 $\mathscr{P}^{\mathsf{piv}}$ partitions the elements of $\mathbb{F}_{a}^{n \times m}$ according to the pivot indices in the RRE form. We have:

$$\mathscr{P}^{\mathsf{piv}}| = \sum_{r=0}^{m} \binom{m}{r} = 2^{m}.$$

Example:

$$M = \begin{pmatrix} 1 & \bullet & 0 & 0 & \bullet & \bullet \\ 0 & 0 & 1 & 0 & \bullet & \bullet \\ 0 & 0 & 0 & 1 & \bullet & \bullet \end{pmatrix}$$

$$piv(M) = (1,3,4).$$

イロト イロト イヨト イヨト

DQC

 \mathscr{P}^{piv} partitions the elements of $\mathbb{F}_{q}^{n \times m}$ according to the pivot indices in the RRE form. We have:

$$\mathscr{P}^{\mathsf{piv}}| = \sum_{r=0}^{m} \binom{m}{r} = 2^{m}$$

Example:

$$M = \begin{pmatrix} 1 & \bullet & 0 & 0 & \bullet & \bullet \\ 0 & 0 & 1 & 0 & \bullet & \bullet \\ 0 & 0 & 0 & 1 & \bullet & \bullet \end{pmatrix}$$

$$piv(M) = (1,3,4).$$

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Notation

Let
$$\Pi = \{(j_1, ..., j_r) \mid 1 \le r \le m, 1 \le j_1 < j_2 < \dots < j_r \le m\} \cup \{()\}$$

Then

$$\mathscr{P}^{\mathsf{piv}} = (P_{\lambda})_{\lambda \in \Pi}.$$

We treat the elements of Π as sets or as lists, depending on what is more convenient.

DQC

Theorem (Gluesing-Luerssen, R.)

 $\mathscr{P}^{\mathsf{piv}}$ is Fourier-reflexive, but not self-dual $(\widehat{\mathscr{P}^{\mathsf{piv}}} \neq \mathscr{P}^{\mathsf{piv}})$.

How does $\widehat{\mathscr{P}^{\mathsf{piv}}}$ look like?

DQC

イロト イヨト イヨト イヨト 二日

Theorem (Gluesing-Luerssen, R.)

 $\mathscr{P}^{\mathsf{piv}}$ is Fourier-reflexive, but not self-dual $(\widehat{\mathscr{P}^{\mathsf{piv}}} \neq \mathscr{P}^{\mathsf{piv}})$.

How does $\widehat{\mathscr{P}^{\mathsf{piv}}}$ look like?

Theorem (Gluesing-Luerssen, R.)

 $\widehat{\mathscr{P}^{\mathsf{piv}}} = \mathscr{P}^{\mathsf{rpiv}}$, the reverse pivot partition.

 $\mathscr{P}^{\text{rpiv}}$ partitions the elements of $\mathbb{F}_q^{n \times m}$ according to the pivot indices of the RRE form computed from the right.

Theorem (Gluesing-Luerssen, R.)

 $\mathscr{P}^{\mathsf{piv}}$ is Fourier-reflexive, but not self-dual $(\widehat{\mathscr{P}^{\mathsf{piv}}} \neq \mathscr{P}^{\mathsf{piv}})$.

How does $\widehat{\mathscr{P}^{\mathsf{piv}}}$ look like?

```
Theorem (Gluesing-Luerssen, R.)
```

 $\widehat{\mathscr{P}^{\mathsf{piv}}} = \mathscr{P}^{\mathsf{rpiv}}$, the reverse pivot partition.

 $\mathscr{P}^{\text{rpiv}}$ partitions the elements of $\mathbb{F}_q^{n \times m}$ according to the pivot indices of the RRE form computed from the right.

Definition

A Ferrers diagram is a subset $\mathscr{F} \subseteq [n] \times [m]$ that satisfies the following:

- if $(i,j) \in \mathscr{F}$ and j < m, then $(i,j+1) \in \mathscr{F}$ (right aligned),
- 2 if $(i,j) \in \mathscr{F}$ and i > 1, then $(i-1,j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F} = [c_1, \ldots, c_m]$. E.g.

Definition

A Ferrers diagram is a subset $\mathscr{F} \subseteq [n] \times [m]$ that satisfies the following:

- if $(i,j) \in \mathscr{F}$ and j < m, then $(i,j+1) \in \mathscr{F}$ (right aligned),
- 2 if $(i,j) \in \mathscr{F}$ and i > 1, then $(i-1,j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F} = [c_1, \ldots, c_m]$. E.g.

We denote by $\mathbb{F}_q[\mathscr{F}]$ the space of matrices supported on \mathscr{F} , and let

$$P_r(\mathscr{F}) := \{ M \in \mathbb{F}_q[\mathscr{F}] \mid \mathsf{rk}(M) = r \}.$$

Definition

A Ferrers diagram is a subset $\mathscr{F} \subseteq [n] \times [m]$ that satisfies the following:

- if $(i,j) \in \mathscr{F}$ and j < m, then $(i,j+1) \in \mathscr{F}$ (right aligned),
- 2 if $(i,j) \in \mathscr{F}$ and i > 1, then $(i-1,j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F} = [c_1, \ldots, c_m]$. E.g.

$$\mathscr{F} = \qquad \begin{array}{c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} = [1,3,3,4]$$

We denote by $\mathbb{F}_q[\mathscr{F}]$ the space of matrices supported on \mathscr{F} , and let

$$P_r(\mathscr{F}) := \{ M \in \mathbb{F}_q[\mathscr{F}] \mid \mathsf{rk}(M) = r \}.$$

We can express the Krawtchouk coefficients of \mathscr{P}^{piv} in terms of $P_r(\mathscr{F})$, for certain r and for a suitable diagram \mathscr{F} .

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$\sigma = [m] \setminus \mu, \qquad \lambda \cap \sigma = (\lambda_{\alpha_1}, \dots, \lambda_{\alpha_x}), \qquad \mu \setminus \lambda = (\mu_{\beta_1}, \dots, \mu_{\beta_y}).$$

Furthermore, set

$$z_j = |\{i \in [x] \mid \lambda_{lpha_i} < \mu_{eta_j}\}| \quad \text{for } j \in [y], \qquad \mathscr{F} = [z_1, \dots, z_y].$$

DQC

イロト イロト イヨト イヨト

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$\sigma = [m] \setminus \mu, \qquad \lambda \cap \sigma = (\lambda_{\alpha_1}, \dots, \lambda_{\alpha_x}), \qquad \mu \setminus \lambda = (\mu_{\beta_1}, \dots, \mu_{\beta_y})$$

Furthermore, set

$$z_j = |\{i \in [x] \mid \lambda_{\alpha_i} < \mu_{\beta_j}\}|$$
 for $j \in [y]$, $\mathscr{F} = [z_1, \dots, z_y]$.

Then

$$\mathcal{K}(\mathscr{P}^{\mathsf{piv}};\lambda,\mu) = \sum_{t=0}^{m} (-1)^{|\lambda|-t} q^{nt + \binom{|\lambda|-t}{2}} \sum_{r=0}^{|\lambda \cap \sigma|} P_r(\mathscr{F}) \begin{bmatrix} |\lambda \cap \sigma| - r \\ t \end{bmatrix}_{q}$$

DQC

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$\sigma = [m] \setminus \mu, \qquad \lambda \cap \sigma = (\lambda_{\alpha_1}, \ldots, \lambda_{\alpha_x}), \qquad \mu \setminus \lambda = (\mu_{\beta_1}, \ldots, \mu_{\beta_y}).$$

Furthermore, set

$$z_j = |\{i \in [x] \mid \lambda_{\alpha_i} < \mu_{\beta_j}\}|$$
 for $j \in [y]$, $\mathscr{F} = [z_1, \dots, z_y]$.

Then

$$\mathcal{K}(\mathscr{P}^{\mathsf{piv}};\lambda,\mu) = \sum_{t=0}^{m} (-1)^{|\lambda|-t} q^{nt + \binom{|\lambda|-t}{2}} \sum_{r=0}^{|\lambda \cap \sigma|} P_r(\mathscr{F}) \begin{bmatrix} |\lambda \cap \sigma| - r \\ t \end{bmatrix}_{\mathcal{A}}$$

Therefore, $\mathcal{K}(\mathscr{P}^{\mathsf{piv}}; \lambda, \mu)$ can be expressed in terms of the rank-distribution of $\mathbb{F}_q(\mathscr{F})$ for a suitable $\mathscr{F} \to \mathsf{rook}$ theory

Feb. 2019 15 / 19

Definition

The *q*-rook polynomial associated with \mathscr{F} and $r \ge 0$ is

$$R_r(\mathscr{F}) = \sum_{C \in \mathsf{NAR}_r(\mathscr{F})} q^{\mathsf{inv}(C,\mathscr{F})} \in \mathbb{Z}[q],$$

where:

- NAR_r(𝔅) is the set of all placements of r non-attacking rooks on 𝔅 (non-attacking means that no two rooks are in the same column, and no two are in the same row)
- $inv(C, \mathscr{F}) \in \mathbb{N}$ is computed as shown on the blackboard

<ロト <回ト < 三ト < 三ト -

Definition

The *q*-rook polynomial associated with \mathscr{F} and $r \ge 0$ is

$$R_r(\mathscr{F}) = \sum_{C \in \mathsf{NAR}_r(\mathscr{F})} q^{\mathsf{inv}(C,\mathscr{F})} \in \mathbb{Z}[q],$$

where:

- NAR_r(𝔅) is the set of all placements of r non-attacking rooks on 𝔅 (non-attacking means that no two rooks are in the same column, and no two are in the same row)
- $inv(C, \mathscr{F}) \in \mathbb{N}$ is computed as shown on the blackboard

Theorem (Haglund)

For any Ferrers diagram \mathscr{F} and any $r \ge 0$ we have

$$P_r(\mathscr{F}) = (q-1)^r q^{|\mathscr{F}|-r} R_r(\mathscr{F})_{|q^{-1}}$$

in the ring $\mathbb{Z}[q,q^{-1}]$.

Natural task: find an explicit expression for $R_r(\mathscr{F})$.

nan

イロト イヨト イヨト イヨト 三日

An explicit formula for $R_r(\mathscr{F})$:

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{F} = [c_1, \ldots, c_m]$ be an $n \times m$ -Ferrers diagram. For $k \in [m]$ define $a_k = c_k - k + 1$.

For $j \in [m]$ let $\sigma_j \in \mathbb{Q}[x_1, \dots, x_m]$ be the j^{th} elementary symmetric polynomial in m indeterminates ($\sigma_0 = 1, \dots, \sigma_m = x_1 \cdots x_m$).

Then

$$R_r(q) = \frac{q^{\binom{r+1}{2}-rm+\operatorname{area}(\mathscr{F})}(-1)^{m-r}}{(1-q)^r \prod_{k=1}^{m-r}(1-q^k)} \sum_{t=m-r}^m (-1)^t \sigma_{m-t}(q^{-a_1},\ldots,q^{-a_m}) \prod_{j=0}^{m-r-1} (1-q^{t-j}).$$

An explicit formula for $R_r(\mathscr{F})$:

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{F} = [c_1, \dots, c_m]$ be an $n \times m$ -Ferrers diagram. For $k \in [m]$ define $a_k = c_k - k + 1$.

For $j \in [m]$ let $\sigma_j \in \mathbb{Q}[x_1, \dots, x_m]$ be the j^{th} elementary symmetric polynomial in m indeterminates ($\sigma_0 = 1, \dots, \sigma_m = x_1 \cdots x_m$).

Then

$$R_r(q) = \frac{q^{\binom{r+1}{2}-rm+\operatorname{area}(\mathscr{F})}(-1)^{m-r}}{(1-q)^r \prod_{k=1}^{m-r}(1-q^k)} \sum_{t=m-r}^m (-1)^t \sigma_{m-t}(q^{-a_1},\ldots,q^{-a_m}) \prod_{j=0}^{m-r-1} (1-q^{t-j}).$$

Combining this with Haglund's theorem we find an explicit expression for $P_r(\mathscr{F})$.

Proof is long and technical.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A different approach: compute $P_r(\mathscr{F})$ directly. Notation: $\mathscr{F} = [c_1, ..., c_m]$.

Theorem (Gluesing-Luerssen, R.)

$$P_r(\mathscr{F}) = \sum_{1 \le i_1 < \cdots < i_r \le m} q^{rm - \sum_{j=1}^r i_j} \prod_{j=1}^r (q^{c_{i_j} - j + 1} - 1).$$

Proof is short.

A different approach: compute $P_r(\mathscr{F})$ directly. Notation: $\mathscr{F} = [c_1, ..., c_m]$.

Theorem (Gluesing-Luerssen, R.)

$$P_r(\mathscr{F}) = \sum_{1 \leq i_1 < \cdots < i_r \leq m} q^{rm - \sum_{j=1}^r i_j} \prod_{j=1}^r (q^{c_{i_j} - j + 1} - 1).$$

Proof is short.

But inverting Haglund's theorem we also find a simple explicit formula for $R_r(\mathscr{F})!$

Corollary (Gluesing-Luerssen, R.)

$$R_{r}(\mathscr{F}) = \frac{q^{\sum_{j=1}^{m} c_{j} - rm} \sum_{1 \le i_{1} < \dots < i_{r} \le m} \prod_{j=1}^{r} (q^{i_{j} + j - c_{i_{j}} - 1} - q^{i_{j}})}{(1 - q)^{r}}$$

200

イロト イヨト イヨト イヨト 三日

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$S_{m+1,r} = q^{r-1}S_{m,r-1} + rac{q^r-1}{q-1}S_{m,r}$$

with initial conditions $S_{0,0}(q) = 1$ and $S_{m,r}(q) = 0$ for r < 0 or r > m.

DQC

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$S_{m+1,r} = q^{r-1}S_{m,r-1} + rac{q^r-1}{q-1}S_{m,r}$$

with initial conditions $S_{0,0}(q) = 1$ and $S_{m,r}(q) = 0$ for r < 0 or r > m.

Theorem (Garsia, Remmel)

$$S_{m+1,m+1-r}=R_r(\mathscr{F}),$$

where $\mathscr{F} = [1, ..., m]$ is the upper-triangular $m \times m$ Ferrers board.

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$S_{m+1,r} = q^{r-1}S_{m,r-1} + rac{q^r-1}{q-1}S_{m,r}$$

with initial conditions $S_{0,0}(q) = 1$ and $S_{m,r}(q) = 0$ for r < 0 or r > m.

Theorem (Garsia, Remmel)

$$S_{m+1,m+1-r}=R_r(\mathscr{F}),$$

where $\mathscr{F} = [1, ..., m]$ is the upper-triangular $m \times m$ Ferrers board.

Theorem (Gluesing-Luerssen, R.)

$$S_{m+1,m+1-r} = \frac{q^{\binom{m+1}{2}-rm} \sum_{1 \le i_1 < \dots < i_r \le m} \prod_{j=1}^r (q^{j-1} - q^{i_j})}{(1-q)^r} \quad \text{for } 1 \le r \le m+1.$$

<ロト < 回 ト < 三 ト < 三 ト - 三</p>

We can use these results to derive an explicit formula for the q-Stirling numbers of the second kind. The latter are defined via the recursion

$$S_{m+1,r} = q^{r-1}S_{m,r-1} + rac{q^r-1}{q-1}S_{m,r}$$

with initial conditions $S_{0,0}(q) = 1$ and $S_{m,r}(q) = 0$ for r < 0 or r > m.

Theorem (Garsia, Remmel)

$$S_{m+1,m+1-r}=R_r(\mathscr{F}),$$

where $\mathscr{F} = [1, ..., m]$ is the upper-triangular $m \times m$ Ferrers board.

Theorem (Gluesing-Luerssen, R.)

$$S_{m+1,m+1-r} = \frac{q^{\binom{m+1}{2}-rm} \sum_{1 \le i_1 < \dots < i_r \le m} \prod_{j=1}^r (q^{j-1} - q^{i_j})}{(1-q)^r} \quad \text{for } 1 \le r \le m+1.$$

Thank you very much!

《曰》《卽》《臣》《臣》

DQC