

A classical result in coding theory:

Theorem (MacWilliams)

Let $\mathscr{C} \leq \mathbb{F}_q^n$ be a code with the Hamming metric. Then for all $0 \leq j \leq n$ we have

$$W_j^{\mathsf{H}}(\mathscr{C}^{\perp}) = \sum_{i=0}^n \sum_{\ell=0}^j (-1)^{\ell} (q-1)^{j-\ell} \binom{i}{\ell} \binom{n-i}{j-\ell} W_i^{\mathsf{H}}(\mathscr{C}).$$

These identities are invertible.

A classical result in coding theory:

Theorem (MacWilliams)

Let $\mathscr{C} \leq \mathbb{F}_q^n$ be a code with the Hamming metric. Then for all $0 \leq j \leq n$ we have

$$W_j^{\mathsf{H}}(\mathscr{C}^{\perp}) = \sum_{i=0}^n \sum_{\ell=0}^j (-1)^{\ell} (q-1)^{j-\ell} \binom{i}{\ell} \binom{n-i}{j-\ell} W_i^{\mathsf{H}}(\mathscr{C}).$$

These identities are invertible.

Generalizations of this result have been extensively studied in various contexts:

- association schemes
- finite abelian groups
- posets/lattices

Definition

Let (G,+) be a finite abelian group. The character group of G is

$$\widehat{\mathsf{G}} = \{\mathsf{group} \ \mathsf{homomorphisms} \ \chi : \mathsf{G} o \mathbb{C}^* \}$$

endowed with point-wise multiplication:

$$\chi_1 \cdot \chi_2 \ (g) = \chi_1(g) \cdot \chi_2(g)$$
 for all $g \in G$.

Definition

Let (G,+) be a finite abelian group. The character group of G is

$$\widehat{G} = \{ ext{group homomorphisms } \chi : G o \mathbb{C}^* \}$$

endowed with point-wise multiplication:

$$\chi_1 \cdot \chi_2 \ (g) = \chi_1(g) \cdot \chi_2(g)$$
 for all $g \in G$.

We focus on a special situation:

- ullet (G,+)=(V,+) is the additive group of a finite-dimensional linear space over \mathbb{F}_q
- V is endowed with a given scalar product $\langle \cdot \cdot \rangle$

Remark

 (\widehat{V},\cdot) has a natural structure of \mathbb{F}_q -linear space via

$$a\chi(v) = \chi(av), \quad a \in \mathbb{F}_a, \ v \in V.$$

Moreover, $\dim(V) = \dim(\widehat{V})$.

We focus on a special situation:

- ullet (G,+)=(V,+) is the additive group of a finite-dimensional linear space over \mathbb{F}_q
- ullet V is endowed with a given scalar product $\langle\cdot\;\cdot
 angle:V imes V o \mathbb{F}_q$

Remark

 $\langle\cdot\;\cdot
angle$ can be used to identify the spaces (V,+) and (\widehat{V},\cdot) as follows.

Fix a non-trivial character $\xi : \mathbb{F}_q \to \mathbb{C}^*$ and let

$$\psi_{\xi}:V o \widehat{V}, \qquad \psi_{\xi}(v)(w)=\xi(\langle v,w
angle) \quad ext{for all } v,w\in V.$$

We focus on a special situation:

- ullet (G,+)=(V,+) is the additive group of a finite-dimensional linear space over \mathbb{F}_q
- ullet V is endowed with a given scalar product $\langle\cdot\;\cdot
 angle:V imes V o \mathbb{F}_q$

Remark

 $\langle \cdot \cdot \rangle$ can be used to identify the spaces (V,+) and (\widehat{V},\cdot) as follows.

Fix a non-trivial character $\xi: \mathbb{F}_q \to \mathbb{C}^*$ and let

$$\psi_{\xi}:V \to \widehat{V}, \qquad \psi_{\xi}(v)(w) = \xi(\langle v,w \rangle) \quad \text{for all } v,w \in V.$$

Theorem (Folklore)

 $\psi_{\mathcal{E}}$ is an \mathbb{F}_q -isomorphism of linear spaces whenever ξ is non-trivial.

Different choices of ξ give different identifications. However, all the objects we are interested in will not depend on the choice of ξ .

A partition $\mathscr{P} = \{P_i\}_{i \in I}$ of V is **invariant** if $aP_i = P_i$ for all $i \in I$ and $a \in \mathbb{F}_q \setminus \{0\}$.

Example

Partitioning the elements of \mathbb{F}_q^n according to their Hamming weight yields \mathscr{P}^H .

A partition $\mathscr{P} = \{P_i\}_{i \in I}$ of V is **invariant** if $aP_i = P_i$ for all $i \in I$ and $a \in \mathbb{F}_q \setminus \{0\}$.

Example

Partitioning the elements of \mathbb{F}_q^n according to their Hamming weight yields \mathscr{P}^H .

Definition

Let $\mathscr{P} = \{P_i\}_{i \in I}$ be an invariant partition of $V \quad (P_i \neq \emptyset \text{ for all } i \in I)$.

The **dual** of $\mathscr P$ is the partition $\widehat{\mathscr P}$ of V defined by the equivalence relation

$$w \sim w' \iff \sum_{v \in P_i} \psi_{\xi}(v)(w) = \sum_{v \in P_i} \psi_{\xi}(v)(w') \text{ for all } i \in I.$$

(recall: $\psi_{\xi}:(V,+) \to (\widehat{V},\cdot)$ is an \mathbb{F}_q -isomorphism).

A partition $\mathscr{P} = \{P_i\}_{i \in I}$ of V is **invariant** if $aP_i = P_i$ for all $i \in I$ and $a \in \mathbb{F}_q \setminus \{0\}$.

Example

Partitioning the elements of \mathbb{F}_q^n according to their Hamming weight yields \mathscr{P}^H .

Definition

Let $\mathscr{P} = \{P_i\}_{i \in I}$ be an invariant partition of $V \quad (P_i \neq \emptyset \text{ for all } i \in I)$.

The **dual** of \mathscr{P} is the partition $\widehat{\mathscr{P}}$ of V defined by the equivalence relation

$$w \sim w' \iff \sum_{v \in P_i} \psi_{\xi}(v)(w) = \sum_{v \in P_i} \psi_{\xi}(v)(w') \quad \text{for all } i \in I.$$

(recall: $\psi_{\xi}: (V,+) \to (\widehat{V},\cdot)$ is an \mathbb{F}_q -isomorphism).

 $\overset{\bullet}{\square}$ We use ξ to define $\widehat{\mathscr{P}}$.

A partition $\mathscr{P} = \{P_i\}_{i \in I}$ of V is **invariant** if $aP_i = P_i$ for all $i \in I$ and $a \in \mathbb{F}_q \setminus \{0\}$.

Example

Partitioning the elements of \mathbb{F}_q^n according to their Hamming weight yields \mathscr{P}^H .

Definition

Let $\mathscr{P} = \{P_i\}_{i \in I}$ be an invariant partition of $V \quad (P_i \neq \emptyset \text{ for all } i \in I)$.

The **dual** of $\mathscr P$ is the partition $\widehat{\mathscr P}$ of V defined by the equivalence relation

$$w \sim w' \iff \sum_{v \in P_i} \psi_{\xi}(v)(w) = \sum_{v \in P_i} \psi_{\xi}(v)(w') \quad \text{for all } i \in I.$$

(recall: $\psi_{\xi}:(V,+) \to (\widehat{V},\cdot)$ is an \mathbb{F}_q -isomorphism).

 $oldsymbol{\Lambda}$ We use ξ to define $\widehat{\mathscr{P}}$. However,

Proposition

 $\widehat{\mathscr{P}}$ does not depend on ξ , if \mathscr{P} is invariant.

DATA:

- V an \mathbb{F}_q -space of finite dimension
- ullet $\langle\cdot\;\cdot
 angle$ a scalar product on V
- $\mathscr{P} = \{P_i\}_{i \in I}$ an invariant partition of V

CONSTRUCTION: the dual partition $\widehat{\mathscr{P}} = \{Q_j\}_{j \in J}$ of V (which is invariant as well)

DATA:

- V an \mathbb{F}_q -space of finite dimension
- $\bullet \ \langle \cdot \ \cdot \rangle$ a scalar product on V
- $\mathscr{P} = \{P_i\}_{i \in I}$ an invariant partition of V

CONSTRUCTION: the dual partition $\widehat{\mathscr{P}} = \{Q_j\}_{j \in J}$ of V (which is invariant as well)

Definition

A **code** is an \mathbb{F}_q -subspace of V. Its **dual** is

$$\mathscr{C}^{\perp} = \{ w \in V \mid \langle v, w \rangle = 0 \text{ for all } v \in \mathscr{C} \} \leq V.$$

Define:

- the \mathscr{P} -distribution of \mathscr{C} : $\mathscr{P}(\mathscr{C},i) = |\mathscr{C} \cap P_i|, i \in I$.
- the $\widehat{\mathscr{P}}$ -distribution of \mathscr{C}^{\perp} : $\widehat{\mathscr{P}}(\mathscr{C}^{\perp},j) = |\mathscr{C}^{\perp} \cap Q_j|, \quad j \in J$.

Under certain conditions, MacWilliams-type identities hold for the \mathscr{P} - and $\widehat{\mathscr{P}}$ -partition.

4 D > 4 D > 4 E > 4 E > E 990

We say that $\mathscr P$ is Fourier-reflexive if $|\mathscr P|=|\widehat{\mathscr P}|$ and self-dual if $\widehat{\mathscr P}=\mathscr P.$

 $(self-dual \implies Fourier-reflexive)$

We say that $\mathscr P$ is Fourier-reflexive if $|\mathscr P|=|\widehat{\mathscr P}|$ and self-dual if $\widehat{\mathscr P}=\mathscr P.$

(self-dual ⇒ Fourier-reflexive)

Theorem (Generalized MacWilliams Identities)

Let $\mathscr{P} = \{P_i\}_{i \in I}$ be invariant and Fourier-reflexive.

Let $\widehat{\mathscr{P}} = \{Q_j\}_{j \in J}$. Let $\mathscr{C} \leq V$ be a code. We have

$$\widehat{\mathscr{P}}(\mathscr{C}^{\perp},j) = \frac{1}{|\mathscr{C}|} \sum_{i \in I} K(\mathscr{P};i,j) \cdot \mathscr{P}(\mathscr{C},i),$$

where $K(\mathcal{P};i,j)$ are suitable numbers called **Krawtchouk coefficients**. Moreover, the matrix of the $K(\mathcal{P};i,j)$ is of size $|I| \times |J| = |I| \times |I|$ and invertible.

We say that $\mathscr P$ is Fourier-reflexive if $|\mathscr P|=|\widehat{\mathscr P}|$ and self-dual if $\widehat{\mathscr P}=\mathscr P.$

(self-dual ⇒ Fourier-reflexive)

Theorem (Generalized MacWilliams Identities)

Let $\mathscr{P} = \{P_i\}_{i \in I}$ be invariant and Fourier-reflexive.

Let $\widehat{\mathscr{P}} = \{Q_i\}_{j \in J}$. Let $\mathscr{C} \leq V$ be a code. We have

$$\widehat{\mathscr{P}}(\mathscr{C}^{\perp},j) = \frac{1}{|\mathscr{C}|} \sum_{i \in I} K(\mathscr{P};i,j) \cdot \mathscr{P}(\mathscr{C},i),$$

where $K(\mathcal{P};i,j)$ are suitable numbers called **Krawtchouk coefficients**. Moreover, the matrix of the $K(\mathcal{P};i,j)$ is of size $|I| \times |J| = |I| \times |I|$ and invertible.

Definition

$$K(\mathscr{P};i,j) = \sum_{w \in Q_i} \psi_{\xi}(w)(v)$$
, where v is any vector in P_i .

Again, this does not depend on ξ for invariant partitions.

Problems

Given V with $\langle \cdot \cdot \rangle$,

- Construct Fourier-reflexive partitions P
- \bullet Describe $\widehat{\mathscr{P}}$ and decide if $\widehat{\mathscr{P}}=\mathscr{P}$ (self-duality)
- Compute $K(\mathcal{P}; i, j)$

Problems

Given V with $\langle \cdot \cdot \rangle$,

- Construct Fourier-reflexive partitions \mathscr{P}
- Describe $\widehat{\mathscr{P}}$ and decide if $\widehat{\mathscr{P}} = \mathscr{P}$ (self-duality)
- Compute $K(\mathcal{P}; i, j)$

Theorem (Delsarte)

The rank partition on $\mathbb{F}_q^{n \times m}$ is self-dual of size m+1. Moreover,

$$K(\mathscr{P}^{\mathsf{rk}}; i, j) = \sum_{\ell=0}^{m} (-1)^{j-\ell} q^{n\ell + \binom{j-\ell}{2}} \begin{bmatrix} m-\ell \\ m-j \end{bmatrix}_{q} \begin{bmatrix} m-i \\ \ell \end{bmatrix}_{q}.$$

We concentrate on the matrix space $\mathbb{F}_q^{n\times m}$ with $n\geq m$ endowed with the **trace product**:

$$\langle M, N \rangle = \operatorname{Tr}(MN^t).$$

Other partitions

We study:

- ullet the row-space partition $\mathscr{P}^{\mathrm{rs}}$
- ullet the pivot partition $\mathscr{P}^{\operatorname{piv}}$

These are invariant partitions of $\mathbb{F}_q^{n \times m}$.

Other partitions

We study:

- ullet the row-space partition $\mathscr{P}^{\mathsf{rs}}$
- \bullet the pivot partition \mathscr{P}^{piv}

These are invariant partitions of $\mathbb{F}_q^{n \times m}$.

Results (Gluesing-Luerssen, R.):

- Prs is self-dual
- \bullet explicit formula for the Krawtchouk coefficients of $\mathscr{P}^{\rm rs}$
- ullet the pivot partition $\mathscr{D}^{\mathrm{piv}}$ is Fourier-reflexive (not self-dual)
- \bullet connection between the Krawtchouk coefficients of $\mathscr{P}^{\mathsf{piv}}$ and rook theory
- ullet notions of extremality from $\mathscr{D}^{\mathsf{rs}}$ and $\mathscr{D}^{\mathsf{piv}}$, and properties of extremal codes
- MacWilliams extension theorem fails for these partitions

 $\mathscr{P}^{\mathrm{piv}}$ partitions the elements of $\mathbb{F}_q^{n imes m}$ according to the pivot indices in the RRE form.

We have:

$$|\mathscr{P}^{\mathsf{piv}}| = \sum_{r=0}^{m} \binom{m}{r} = 2^{m}.$$

 $\mathscr{P}^{\mathsf{piv}}$ partitions the elements of $\mathbb{F}_q^{n imes m}$ according to the pivot indices in the RRE form.

We have:

$$|\mathscr{P}^{\mathsf{piv}}| = \sum_{r=0}^{m} \binom{m}{r} = 2^{m}.$$

Example:

 \mathscr{P}^{piv} partitions the elements of $\mathbb{F}_q^{n\times m}$ according to the pivot indices in the RRE form.

We have:

$$|\mathscr{P}^{\mathsf{piv}}| = \sum_{r=0}^{m} \binom{m}{r} = 2^{m}.$$

Example:

$$piv(M) = (1,3,4).$$

Notation

Let
$$\Pi = \{(j_1, ..., j_r) \mid 1 \le r \le m, 1 \le j_1 < j_2 < \cdots < j_r \le m\} \cup \{()\}.$$

Then
$$\mathscr{P}^{\mathsf{piv}} = (P_{\lambda})_{\lambda \in \Pi}.$$

We treat the elements of Π as sets or as lists, depending on what is more convenient.

Theorem (Gluesing-Luerssen, R.)

 $\mathscr{P}^{\mathsf{piv}}$ is Fourier-reflexive, but not self-dual $(\widehat{\mathscr{P}^{\mathsf{piv}}} \neq \mathscr{P}^{\mathsf{piv}})$.

How does $\mathscr{P}^{\mathsf{piv}}$ look like?

Theorem (Gluesing-Luerssen, R.)

 $\mathscr{P}^{\mathsf{piv}}$ is Fourier-reflexive, but not self-dual $(\widehat{\mathscr{P}^{\mathsf{piv}}} \neq \mathscr{P}^{\mathsf{piv}})$.

How does $\widehat{\mathscr{P}^{\text{piv}}}$ look like?

Theorem (Gluesing-Luerssen, R.)

 $\widehat{\mathscr{P}^{\mathsf{piv}}} = \mathscr{P}^{\mathsf{rpiv}}$, the reverse pivot partition.

 $\mathscr{P}^{\mathsf{rpiv}}$ partitions the elements of $\mathbb{F}_q^{n \times m}$ according to the pivot indices of the RRE form computed **from the right**.

Theorem (Gluesing-Luerssen, R.)

 $\mathscr{P}^{\mathsf{piv}}$ is Fourier-reflexive, but not self-dual $(\widehat{\mathscr{P}^{\mathsf{piv}}} \neq \mathscr{P}^{\mathsf{piv}})$.

How does $\widehat{\mathscr{P}^{\text{piv}}}$ look like?

Theorem (Gluesing-Luerssen, R.)

 $\widehat{\mathscr{P}^{\text{piv}}} = \mathscr{P}^{\text{rpiv}}$, the reverse pivot partition.

 $\mathscr{P}^{\mathsf{rpiv}}$ partitions the elements of $\mathbb{F}_q^{n \times m}$ according to the pivot indices of the RRE form computed from the right.

Computing the Krawtchouk coefficients is a different story...

Definition

A **Ferrers diagram** is a subset $\mathscr{F} \subseteq [n] \times [m]$ that satisfies the following:

- if $(i,j) \in \mathscr{F}$ and j < m, then $(i,j+1) \in \mathscr{F}$ (right aligned),
- ② if $(i,j) \in \mathscr{F}$ and i > 1, then $(i-1,j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F} = [c_1, \ldots, c_m]$.

E.g.

$$\mathscr{F}=$$

$$= [1,3,3,4]$$

Definition

A **Ferrers diagram** is a subset $\mathscr{F} \subseteq [n] \times [m]$ that satisfies the following:

- if $(i,j) \in \mathscr{F}$ and j < m, then $(i,j+1) \in \mathscr{F}$ (right aligned),
- ② if $(i,j) \in \mathscr{F}$ and i > 1, then $(i-1,j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F} = [c_1, \ldots, c_m]$.

E.g.

We denote by $\mathbb{F}_q[\mathscr{F}]$ the space of matrices supported on \mathscr{F} , and let

$$P_r(\mathscr{F}) := \{ M \in \mathbb{F}_q[\mathscr{F}] \mid \mathsf{rk}(M) = r \}.$$

Definition

A **Ferrers diagram** is a subset $\mathscr{F} \subseteq [n] \times [m]$ that satisfies the following:

- if $(i,j) \in \mathscr{F}$ and j < m, then $(i,j+1) \in \mathscr{F}$ (right aligned),
- ② if $(i,j) \in \mathscr{F}$ and i > 1, then $(i-1,j) \in \mathscr{F}$ (top aligned).

We represent a Ferrers diagram by its column lengths, $\mathscr{F} = [c_1, \ldots, c_m]$.

E.g.

$$\mathscr{F} = \qquad \qquad = [1,3,3,4]$$

We denote by $\mathbb{F}_q[\mathscr{F}]$ the space of matrices supported on \mathscr{F} , and let

$$P_r(\mathscr{F}) := \{ M \in \mathbb{F}_q[\mathscr{F}] \mid \mathsf{rk}(M) = r \}.$$

We can express the Krawtchouk coefficients of \mathscr{P}^{piv} in terms of $P_r(\mathscr{F})$, for certain r and for a suitable diagram \mathscr{F} .

Using combinatorial tools (regular support functions):

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$\sigma = [m] \setminus \mu, \qquad \lambda \cap \sigma = (\lambda_{\alpha_1}, \dots, \lambda_{\alpha_x}), \qquad \mu \setminus \lambda = (\mu_{\beta_1}, \dots, \mu_{\beta_v}).$$

Furthermore, set

$$z_j = |\{i \in [x] \mid \lambda_{\alpha_i} < \mu_{\beta_j}\}| \quad \text{for } j \in [y], \qquad \quad \mathscr{F} = [z_1, \dots, z_y].$$

Using combinatorial tools (regular support functions):

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$\sigma = [m] \setminus \mu, \qquad \lambda \cap \sigma = (\lambda_{\alpha_1}, \dots, \lambda_{\alpha_x}), \qquad \mu \setminus \lambda = (\mu_{\beta_1}, \dots, \mu_{\beta_y}).$$

Furthermore, set

$$z_j = |\{i \in [x] \mid \lambda_{\alpha_i} < \mu_{\beta_i}\}| \text{ for } j \in [y],$$
 $\mathscr{F} = [z_1, \dots, z_y].$

Then

$$K(\mathscr{P}^{\mathsf{piv}};\lambda,\mu) = \sum_{t=0}^{m} (-1)^{|\lambda|-t} q^{nt + \binom{|\lambda|-t}{2}} \sum_{r=0}^{|\lambda \cap \sigma|} P_r(\mathscr{F}) \begin{bmatrix} |\lambda \cap \sigma| - r \\ t \end{bmatrix}_q.$$

Using combinatorial tools (regular support functions):

Theorem (Gluesing-Luerssen, R.)

Let $\lambda, \mu \in \Pi$. Set

$$\sigma = [m] \setminus \mu, \qquad \lambda \cap \sigma = (\lambda_{\alpha_1}, \dots, \lambda_{\alpha_x}), \qquad \mu \setminus \lambda = (\mu_{\beta_1}, \dots, \mu_{\beta_v}).$$

Furthermore, set

$$z_j = |\{i \in [x] \mid \lambda_{\alpha_i} < \mu_{\beta_i}\}| \text{ for } j \in [y],$$
 $\mathscr{F} = [z_1, \dots, z_y].$

Then

$$\mathcal{K}(\mathscr{P}^{\mathsf{piv}};\lambda,\mu) = \sum_{t=0}^m (-1)^{|\lambda|-t} q^{nt+\binom{|\lambda|-t}{2}} \sum_{r=0}^{|\lambda\cap\sigma|} P_r(\mathscr{F}) \left[egin{array}{c} |\lambda\cap\sigma|-r \ t \end{array}
ight]_q.$$

Therefore, $K(\mathscr{P}^{\mathsf{piv}}; \lambda, \mu)$ can be expressed in terms of the rank-distribution of $\mathbb{F}_q(\mathscr{F})$ for a suitable $\mathscr{F} \longrightarrow \mathsf{rook}$ theory

Definition

The *q*-rook polynomial associated with \mathscr{F} and $r \geq 0$ is

$$R_r(\mathscr{F}) = \sum_{C \in \mathsf{NAR}_r(\mathscr{F})} q^{\mathsf{inv}(C,\mathscr{F})} \in \mathbb{Z}[q],$$

where:

- NAR_r(\mathscr{F}) is the set of all placements of r non-attacking rooks on \mathscr{F} (non-attacking means that no two rooks are in the same column, and no two are in the same row)
- ullet inv $(C,\mathscr{F})\in\mathbb{N}$ is computed as shown on the blackboard

Definition

The *q*-rook polynomial associated with \mathscr{F} and $r \ge 0$ is

$$R_r(\mathscr{F}) = \sum_{C \in \mathsf{NAR}_r(\mathscr{F})} q^{\mathsf{inv}(C,\mathscr{F})} \in \mathbb{Z}[q],$$

where:

- NAR_r(\mathscr{F}) is the set of all placements of r non-attacking rooks on \mathscr{F} (non-attacking means that no two rooks are in the same column, and no two are in the same row)
- $inv(C, \mathscr{F}) \in \mathbb{N}$ is computed as shown on the blackboard

Theorem (Haglund)

For any Ferrers diagram \mathscr{F} and any $r \geq 0$ we have

$$P_r(\mathscr{F}) = (q-1)^r \ q^{|\mathscr{F}|-r} \ R_r(\mathscr{F})_{|q^{-1}}$$

in the ring $\mathbb{Z}[q,q^{-1}]$.

Natural task: find an explicit expression for $R_r(\mathscr{F})$.

An explicit formula for $R_r(\mathscr{F})$:

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{F} = [c_1, \dots, c_m]$ be an $n \times m$ -Ferrers diagram. For $k \in [m]$ define $a_k = c_k - k + 1$.

For $j \in [m]$ let $\sigma_j \in \mathbb{Q}[x_1, ..., x_m]$ be the j^{th} elementary symmetric polynomial in m indeterminates $(\sigma_0 = 1, ..., \sigma_m = x_1 \cdots x_m)$.

Then

$$R_r(q) = \frac{q^{\binom{r+1}{2}-rm+\operatorname{area}(\mathscr{F})}(-1)^{m-r}}{(1-q)^r \prod_{k=1}^{m-r} (1-q^k)} \sum_{t=m-r}^m (-1)^t \sigma_{m-t}(q^{-a_1}, \dots, q^{-a_m}) \prod_{j=0}^{m-r-1} (1-q^{t-j}).$$

An explicit formula for $R_r(\mathscr{F})$:

Theorem (Gluesing-Luerssen, R.)

Let $\mathscr{F} = [c_1, \dots, c_m]$ be an $n \times m$ -Ferrers diagram. For $k \in [m]$ define $a_k = c_k - k + 1$.

For $j \in [m]$ let $\sigma_j \in \mathbb{Q}[x_1, \dots, x_m]$ be the j^{th} elementary symmetric polynomial in m indeterminates $(\sigma_0 = 1, \dots, \sigma_m = x_1 \cdots x_m)$.

Then

$$R_r(q) = \frac{q^{\binom{r+1}{2}-rm+\operatorname{area}(\mathscr{F})}(-1)^{m-r}}{(1-q)^r \prod_{k=1}^{m-r} (1-q^k)} \sum_{t=m-r}^m (-1)^t \sigma_{m-t}(q^{-a_1}, \dots, q^{-a_m}) \prod_{j=0}^{m-r-1} (1-q^{t-j}).$$

Combining this with Haglund's theorem we find an explicit expression for $P_r(\mathscr{F})$.

Proof is technical.

A different approach: compute $P_r(\mathscr{F})$ directly. No

Notation: $\mathscr{F} = [c_1, ..., c_m]$.

Theorem (Gluesing-Luerssen, R.)

$$P_r(\mathscr{F}) = \sum_{1 \le i_1 < \dots < i_r \le m} q^{rm - \sum_{j=1}^r i_j} \prod_{j=1}^r (q^{c_{i_j} - j + 1} - 1).$$

Proof is short.

A different approach: compute $P_r(\mathscr{F})$ directly. Notation

Notation: $\mathscr{F} = [c_1, ..., c_m]$.

Theorem (Gluesing-Luerssen, R.)

$$P_r(\mathscr{F}) = \sum_{1 \le i_1 < \dots < i_r \le m} q^{rm - \sum_{j=1}^r i_j} \prod_{j=1}^r (q^{c_{i_j} - j + 1} - 1).$$

Proof is short.

But inverting Haglund's theorem we also find a simple explicit formula for $R_r(\mathscr{F})!$

Corollary (Gluesing-Luerssen, R.)

$$R_r(\mathscr{F}) = rac{q^{\sum_{j=1}^m c_j - rm} \sum\limits_{1 \leq i_1 < \cdots < i_r \leq m} \prod\limits_{j=1}^r (q^{i_j + j - c_{i_j} - 1} - q^{i_j})}{(1 - q)^r}.$$

A different approach: compute $P_r(\mathscr{F})$ directly. Notat

Notation: $\mathscr{F} = [c_1, ..., c_m]$.

Theorem (Gluesing-Luerssen, R.)

$$P_r(\mathscr{F}) = \sum_{1 \le i_1 < \dots < i_r \le m} q^{rm - \sum_{j=1}^r i_j} \prod_{j=1}^r (q^{c_{i_j} - j + 1} - 1).$$

Proof is short.

But inverting Haglund's theorem we also find a simple explicit formula for $R_r(\mathscr{F})!$

Corollary (Gluesing-Luerssen, R.)

$$R_r(\mathscr{F}) = \frac{q^{\sum_{j=1}^m c_j - rm} \sum\limits_{1 \leq i_1 < \dots < i_r \leq m} \prod\limits_{j=1}^r (q^{i_j + j - c_{i_j} - 1} - q^{i_j})}{(1 - q)^r}$$

Thank you very much!