Network Coding and the Combinatorics of Codes

Alberto Ravagnani

UCD Algebra and Number Theory Seminar, Oct. 2019

Idea behind coding theory: add redundancy.

Idea behind coding theory: add redundancy.

Encoder $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ injective linear map, $n \ge k$.

Idea behind coding theory: add redundancy.

Encoder $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ injective linear map, $n \ge k$.

Example: binary 3-time repetition scheme

 $E: \mathbb{F}_2 \to \mathbb{F}_2^3, \quad E(a) = (a, a, a) \text{ for all } a \in \mathbb{F}_2.$

Idea behind coding theory: add redundancy.

Encoder $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ injective linear map, $n \ge k$.

Example: binary 3-time repetition scheme $E: \mathbb{F}_2 \to \mathbb{F}_2^3, \quad E(a) = (a, a, a)$ for all $a \in \mathbb{F}_2.$

<u>Note</u>: the image of *E* is a *k*-dimensional subspace of \mathbb{F}_{q}^{n} .

Example [continued]

 $E(\mathbb{F}_2) = \{(0,0,0), (1,1,1)\}.$

Idea behind coding theory: add redundancy.

Encoder $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ injective linear map, $n \ge k$.

Example: binary 3-time repetition scheme	
$E:\mathbb{F}_2\to\mathbb{F}_2^3,$	$E(a) = (a, a, a)$ for all $a \in \mathbb{F}_2$.

<u>Note</u>: the image of *E* is a *k*-dimensional subspace of \mathbb{F}_q^n .

Example [continued]

 $E(\mathbb{F}_2) = \{(0,0,0), (1,1,1)\}.$

Definition

A code is an \mathbb{F}_q -linear subspace $\mathscr{C} \leq \mathbb{F}_q^n$. Elements of \mathscr{C} : codewords.

```
(we often forget about E)
```

In a good quality code $\mathscr{C} \leq \mathbb{F}_q^n$, vectors are "far apart"...

Definition

• The Hamming distance between vectors $x, y \in \mathbb{F}_q^n$ is $d_H(x, y) = \#\{i \mid x_i \neq y_i\}$.

In a good quality code $\mathscr{C} \leq \mathbb{F}_q^n$, vectors are "far apart"...

Definition

- The Hamming distance between vectors $x, y \in \mathbb{F}_q^n$ is $d_H(x, y) = \#\{i \mid x_i \neq y_i\}$.
- The Hamming weight of a vector $x \in \mathbb{F}_q^n$ is $\omega_H(x) = d_H(x,0)$.
- The minimum Hamming distance of a code $\mathscr{C} \neq \{0\}$ is the integer

 $d_{\mathsf{H}}(\mathscr{C}) = \min\{d_{\mathsf{H}}(x,y) \mid x, y \in \mathscr{C} \ x \neq y\} = \min\{\omega_{\mathsf{H}}(x) \mid x \in \mathscr{C}, \ x \neq 0\}.$

In a good quality code $\mathscr{C} \leq \mathbb{F}_q^n$, vectors are "far apart"...

Definition

- The Hamming distance between vectors $x, y \in \mathbb{F}_q^n$ is $d_H(x, y) = \#\{i \mid x_i \neq y_i\}$.
- The Hamming weight of a vector $x \in \mathbb{F}_q^n$ is $\omega_H(x) = d_H(x,0)$.
- The minimum Hamming distance of a code $\mathscr{C} \neq \{0\}$ is the integer

 $d_{\mathsf{H}}(\mathscr{C}) = \min\{d_{\mathsf{H}}(x,y) \mid x, y \in \mathscr{C} \ x \neq y\} = \min\{\omega_{\mathsf{H}}(x) \mid x \in \mathscr{C}, \ x \neq 0\}.$

<u>Note</u>: a code \mathscr{C} corrects up to $\lfloor (d-1)/2 \rfloor$ errors, where $d = d_{\mathsf{H}}(\mathscr{C})$.

In a good quality code $\mathscr{C} \leq \mathbb{F}_q^n$, vectors are "far apart"...

Definition

- The Hamming distance between vectors $x, y \in \mathbb{F}_q^n$ is $d_H(x, y) = \#\{i \mid x_i \neq y_i\}$.
- The Hamming weight of a vector $x \in \mathbb{F}_q^n$ is $\omega_H(x) = d_H(x,0)$.
- The minimum Hamming distance of a code $\mathscr{C} \neq \{0\}$ is the integer

 $d_{\mathsf{H}}(\mathscr{C}) = \min\{d_{\mathsf{H}}(x,y) \mid x, y \in \mathscr{C} \ x \neq y\} = \min\{\omega_{\mathsf{H}}(x) \mid x \in \mathscr{C}, \ x \neq 0\}.$

<u>Note</u>: a code \mathscr{C} corrects up to $\lfloor (d-1)/2 \rfloor$ errors, where $d = d_{\mathsf{H}}(\mathscr{C})$.

Theorem (Singleton, Komamiya)

Let $\mathscr{C} \leq \mathbb{F}_q^n$ be a non-zero code. Then $\dim(\mathscr{C}) \leq n - d_{\mathsf{H}}(\mathscr{C}) + 1$.

If ${\mathscr C}$ meets the bound with equality, then it is called an ${\ensuremath{\mathsf{MDS}}}$ code.

The LRO (Lunar Reconnaissance Orbiter) is taking pictures of the Moon...

A concrete example

Test of quality of transmissions:

without coding

A concrete example

Test of quality of transmissions:

without coding

with coding

Classical coding theory: **one** source of information, **one** terminal.

Classical coding theory: **one** source of information, **one** terminal.

Network coding: **one/multiple** sources of information, **multiple** terminals.

Applications: LTE (mobile phones), distributed storage, peer-to-peer, streaming,...

Network coding: data transmission over (noisy/lossy) networks

Network coding: data transmission over (noisy/lossy) networks

terminals

- One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

Network coding: data transmission over (noisy/lossy) networks

terminals

- One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

What should the nodes do?

Network coding: data transmission over (noisy/lossy) networks

• One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_a^m$.

• The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the number of transmitted messages per channel use (rate).

Network coding: data transmission over (noisy/lossy) networks

terminals

- One source S attempts to transmit messages $v_1, ..., v_n \in \mathbb{F}_q^m$.
- The terminals demand all the messages (multicast).

What should the nodes do?

Goal

Maximize the number of transmitted messages per channel use (rate).

IDEA (Ahlswede-Cai-Li-Yeung 2000): allow the nodes to recombine packets.

Note: This strategy is better than routing.

Note: This strategy is better than routing.

Theorem (Li-Yeung-Cai 2002, Koetter-Médard 2003)

This strategy (linear network coding) applies to general networks and is capacity achieving (w.r. to certain models), provided that $q \gg 0$.

Also, efficient algorithms to design the network operations are known.

Natural solution: design the node operations carefully (decoding at intermediate nodes).

Natural solution: design the node operations carefully (decoding at intermediate nodes). **Other solution:** use rank-metric codes.

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

In standard scenarios, communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

In standard scenarios, communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding

Remark 1: for some scenarios, there is no communication scheme based on rk-metric codes with both (1) and (2). E.g., geographically restricted errors, erasures, ... Kschischang, R., *Adversarial Network Coding*, IEEE Trans. Inf. Th. 2018.

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

In standard scenarios, communication schemes based on rank-metric codes are:

- (1) capacity-achieving (for $q \gg 0$)
- (2) compatible with linear network coding

Remark 1: for some scenarios, there is no communication scheme based on rk-metric codes with both (1) and (2). E.g., geographically restricted errors, erasures, ... Kschischang, R., *Adversarial Network Coding*, IEEE Trans. Inf. Th. 2018.

Remark 2: wireless networks are a very different story Gorla, R., *An Algebraic Framework for End-to-End PLNC*, IEEE Trans. Inf. Th. 2018.

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

- Introduced and studied by Delsarte ('78) for combinatorial interest
- Re-discovered by Gabidulin ('85), Roth ('91), and Cooperstein ('98)
- Re-discovered by Silva-Kschischang-Koetter ('08) for network error amplification

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

- Introduced and studied by Delsarte ('78) for combinatorial interest
- Re-discovered by Gabidulin ('85), Roth ('91), and Cooperstein ('98)
- Re-discovered by Silva-Kschischang-Koetter ('08) for network error amplification

NOTATION: $2 \le n \le m$ integers.

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

- Introduced and studied by Delsarte ('78) for combinatorial interest
- Re-discovered by Gabidulin ('85), Roth ('91), and Cooperstein ('98)
- Re-discovered by Silva-Kschischang-Koetter ('08) for network error amplification

NOTATION: $2 \le n \le m$ integers.

There is a rank-analogue of the Singleton bound:

Theorem (Delsarte) Let $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ be a non-zero rank-metric code. We have $\dim(\mathscr{C}) \leq m(n - d_{rk}(\mathscr{C}) + 1).$

A rank-metric code is an \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. If $\mathscr{C} \neq \{0\}$, then its minimum rank distance is

$$d_{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

- Introduced and studied by Delsarte ('78) for combinatorial interest
- Re-discovered by Gabidulin ('85), Roth ('91), and Cooperstein ('98)
- Re-discovered by Silva-Kschischang-Koetter ('08) for network error amplification

NOTATION: $2 \le n \le m$ integers.

There is a rank-analogue of the Singleton bound:

Theorem (Delsarte) Let $\mathscr{C} \leq \mathbb{F}_{a}^{n \times m}$ be a non-zero rank-metric code. We have

 $\dim(\mathscr{C}) \leq m(n - d_{\mathsf{rk}}(\mathscr{C}) + 1).$

A code \mathscr{C} is **MRD** if it meets the bound with equality $(\Longrightarrow \dim(\mathscr{C}) \equiv 0 \mod m)$.

Classes of codes

Hamming space

- \mathbb{F}_q^n , $d_{\mathsf{H}}(x,y) = |\{i \mid x_i \neq y_i\}|$
- Code: \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^n$
- Bound: dim(\mathscr{C}) $\leq n d_{\mathsf{H}}(\mathscr{C}) + 1$
- Codes meeting the bound: MDS codes

Matrix rank-metric space

- $\mathbb{F}_q^{n \times m}$ with $n \le m$, $d_{\mathsf{rk}}(X, Y) = \mathsf{rk}(X Y)$
- Code: \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$
- Bound: dim(\mathscr{C}) $\leq m(n d_{\mathsf{rk}}(\mathscr{C}) + 1)$
- Codes meeting the bound: MRD codes

Hamming space

- \mathbb{F}_q^n , $d_{\mathsf{H}}(x,y) = |\{i \mid x_i \neq y_i\}|$
- Code: \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^n$
- Bound: $\dim(\mathscr{C}) \leq n d_{\mathsf{H}}(\mathscr{C}) + 1$
- Codes meeting the bound: MDS codes

Matrix rank-metric space

- $\mathbb{F}_q^{n \times m}$ with $n \leq m$, $d_{\mathsf{rk}}(X, Y) = \mathsf{rk}(X Y)$
- Code: \mathbb{F}_q -subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$
- Bound: dim(\mathscr{C}) $\leq m(n d_{\mathsf{rk}}(\mathscr{C}) + 1)$
- Codes meeting the bound: MRD codes

Vector rank-metric space

- $\mathbb{F}_{q^m}^n$ with $m \ge n$, $d_{\mathsf{rk}}(x, y) = \dim_{\mathbb{F}_q} \operatorname{span}\{x_1 y_1, ..., x_n y_n\}$
- Code: \mathbb{F}_{q^m} -subspace $\mathscr{C} \leq \mathbb{F}_{q^m}^n$
- Bound: $\dim_{\mathbb{F}_{q^m}}(\mathscr{C}) \leq n d_{\mathsf{rk}}(\mathscr{C}) + 1$
- Codes meeting the bound: (vector) MRD codes

We say that MDS codes are **dense** within the set of k-dimensional codes in \mathbb{F}_q^n .

We study "density questions" in coding theory in:

Byrne, R., *Partition-Balanced Families of Codes and Asymptotoc Enumeration in Coding Theory*, J. Combinatorial Theory A, to appear.

The notion of density

Definition

lf

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $(\mathscr{F}_s \mid s \in S)$ be a sequence of finite non-empty sets indexed by S, and let $(\mathscr{F}'_s \mid s \in S)$ be a sequence of sets with $\mathscr{F}'_s \subseteq \mathscr{F}_s$ for all $s \in S$.

The density function $S \to \mathbb{Q}$ of \mathscr{F}'_s in \mathscr{F}_s is $s \mapsto |\mathscr{F}'_s|/|\mathscr{F}_s|$.

$$\lim_{s\to+\infty} |\mathscr{F}'_{s}|/|\mathscr{F}_{s}| = \delta,$$

then \mathscr{F}'_s has **density** δ in \mathscr{F}_s .

- $\delta = 1$: \mathscr{F}'_s is dense in \mathscr{F}_s
- $\delta = 0$: \mathscr{F}'_s is sparse in \mathscr{F}_s

The notion of density

Definition

Let $S \subseteq \mathbb{N}$ be an infinite set. Let $(\mathscr{F}_s \mid s \in S)$ be a sequence of finite non-empty sets indexed by S, and let $(\mathscr{F}'_s \mid s \in S)$ be a sequence of sets with $\mathscr{F}'_s \subseteq \mathscr{F}_s$ for all $s \in S$.

The density function $S \to \mathbb{Q}$ of \mathscr{F}'_s in \mathscr{F}_s is $s \mapsto |\mathscr{F}'_s|/|\mathscr{F}_s|$.

 $\lim_{s\to+\infty} |\mathscr{F}'_{s}|/|\mathscr{F}_{s}| = \delta,$

then \mathscr{F}'_s has **density** δ in \mathscr{F}_s .

- $\delta = 1$: \mathscr{F}'_s is dense in \mathscr{F}_s
- $\delta = 0$: \mathscr{F}'_s is sparse in \mathscr{F}_s

Example

lf

 $S = \mathbb{N}_{\geq 1} \qquad \mathscr{F}_s = \{ n \in \mathbb{N} \mid 1 \le n \le s \} \qquad \mathscr{F}'_s = \{ p \in \mathbb{N} \mid p \le s, \ p \text{ prime} \}.$

(Hadamard, de la Vallée-Poussin, 1896)

Density of MDS codes

Theorem (Folklore) Let $n \ge k \ge 1$ be integers. We have $\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Sketch of proof

- The k-dimensional MDS codes in \mathbb{F}_q^n are in bijection with the non-zeros of a polynomial $p \in \mathbb{F}_q[z_1,...,z_N]$, where N = k(n-k)
- deg $(p) \leq k \binom{n}{k}$
- Using the Schwartz-Zippel Lemma, one has

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{n \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Sketch of proof

- The k-dimensional MDS codes in \mathbb{F}_q^n are in bijection with the non-zeros of a polynomial $p \in \mathbb{F}_q[z_1,...,z_N]$, where N = k(n-k)
- deg $(p) \leq k \binom{n}{k}$
- Using the Schwartz-Zippel Lemma, one has

$$\frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} \ge \frac{q^{k(n-k)} \left(1 - \frac{k}{q} \binom{n}{k}\right)}{\left\lceil n \right\rceil}$$

 $\lfloor k \rfloor_a$

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{n \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Sketch of proof

- The k-dimensional MDS codes in \mathbb{F}_q^n are in bijection with the non-zeros of a polynomial $p \in \mathbb{F}_q[z_1,...,z_N]$, where N = k(n-k)
- deg $(p) \leq k \binom{n}{k}$
- Using the Schwartz-Zippel Lemma, one has

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} \ge \lim_{q \to +\infty} \frac{q^{k(n-k)} \left(1 - \frac{k}{q} \binom{n}{k}\right)}{\binom{n}{k}_q}$$

 I_{1} (-))

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{n \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Sketch of proof

- The k-dimensional MDS codes in \mathbb{F}_q^n are in bijection with the non-zeros of a polynomial $p \in \mathbb{F}_q[z_1,...,z_N]$, where N = k(n-k)
- deg $(p) \leq k \binom{n}{k}$
- Using the Schwartz-Zippel Lemma, one has

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} \ge \lim_{q \to +\infty} \frac{q^{k(n-k)} \left(1 - \frac{k}{q} \binom{n}{k}\right)}{\left[\binom{n}{k}_q\right]} = 1$$

1. (...)

We study density problems in general:

- Ambient space: Hamming space, matrix rk-metric space, vector rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

We study density problems in general:

- Ambient space: Hamming space, matrix rk-metric space, vector rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

classical arguments (based on Schwartz-Zippel Lemma) often fail.

We study density problems in general:

- Ambient space: Hamming space, matrix rk-metric space, vector rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

classical arguments (based on Schwartz-Zippel Lemma) often fail.

Idea

Look at **families** of codes that exhibit regularity properties with respect to partitions of the ambient space $X \in \{\mathbb{F}_q^n, \mathbb{F}_q^{n \times m}, \mathbb{F}_q^n\}$.

Definition

Let $\mathscr{P} = \{P_1, P_2, ..., P_\ell\}$ be a partition of X.

A family \mathscr{F} of codes in X is \mathscr{P} -balanced if for all $x \in X$ the number

 $|\{\mathscr{C}\in\mathscr{F}\mid x\in\mathscr{C}\}|$

only depends on the class of x with respect to the partition \mathcal{P} .

We study density problems in general:

- Ambient space: Hamming space, matrix rk-metric space, vector rk-metric space
- Various properties related to: minimum distance, covering radius, maximality

classical arguments (based on Schwartz-Zippel Lemma) often fail.

Idea

Look at **families** of codes that exhibit regularity properties with respect to partitions of the ambient space $X \in \{\mathbb{F}_q^n, \mathbb{F}_q^{n \times m}, \mathbb{F}_q^n\}$.

Definition

Let $\mathscr{P} = \{P_1, P_2, ..., P_\ell\}$ be a partition of X.

A family \mathscr{F} of codes in X is \mathscr{P} -balanced if for all $x \in X$ the number

 $|\{\mathscr{C}\in\mathscr{F}\mid x\in\mathscr{C}\}|$

only depends on the class of x with respect to the partition \mathcal{P} .

We use \mathcal{P} -balanced families to estimate the number of codes with a certain property.

MRD vector rk-metric codes

Using the Schwartz-Zippel lemma:

Theorem (Neri-Trautmann-Randrianarisoa-Rosenthal, 2017)

For vector-rank-metric codes (\mathbb{F}_{q^m} -linear)

$$\frac{\# \text{ of } k\text{-dim MRD codes in } \mathbb{F}_{q^m}^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_{q^m}^n} \ge q^{mk(n-k)} \begin{bmatrix} n \\ k \end{bmatrix}_{q^m}^{-1} \left(1 - \sum_{r=0}^k \begin{bmatrix} k \\ k-r \end{bmatrix}_q \begin{bmatrix} n-k \\ r \end{bmatrix}_q q^{r^2} q^{-m} \right)$$

MRD vector rk-metric codes

Using the Schwartz-Zippel lemma:

Theorem (Neri-Trautmann-Randrianarisoa-Rosenthal, 2017)

For vector-rank-metric codes (\mathbb{F}_{q^m} -linear)

$$\frac{\# \text{ of } k\text{-dim MRD codes in } \mathbb{F}_{q^m}^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_{q^m}^n} \ge q^{mk(n-k)} \begin{bmatrix} n \\ k \end{bmatrix}_{q^m}^{-1} \left(1 - \sum_{r=0}^k \begin{bmatrix} k \\ k-r \end{bmatrix}_q \begin{bmatrix} n-k \\ r \end{bmatrix}_q q^{r^2} q^{-m} \right)$$

We can improve this bound as follows:

Theorem (Byrne-R.)

For vector-rank-metric codes (\mathbb{F}_{q^m} -linear)

$$\frac{\# \text{ of } k\text{-dim MRD codes in } \mathbb{F}_{q^m}^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_{q^m}^n} \ge 1 - \frac{q^{mk} - 1}{(q^m - 1)(q^{mn} - 1)} \left(-1 + \sum_{i=0}^{d-1} {n \brack i}_{j=0} \prod_{j=0}^{i-1} (q^m - q^j) \right)$$

MRD codes: rank-analogue of MDS codes. So one might expect them to be dense...

MRD codes: rank-analogue of MDS codes. So one might expect them to be dense...

However, MRD matrix codes are not dense

MRD codes: rank-analogue of MDS codes. So one might expect them to be dense...

However, MRD matrix codes are not dense

Theorem (Byrne-R.)

Let $m \ge n \ge 2$ and let $1 \le k \le mn - 1$ be integers.

- If *m* does not divide *k*, then there is no *k*-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If *m* divides *k*, then

$$\frac{\# \text{ of } k\text{-dim non-MRD codes in } \mathbb{F}_{q}^{n \times m}}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_{q}^{n \times m}} \geq q \begin{bmatrix} mn \\ k \end{bmatrix}^{-1} \left(\sum_{h=1}^{m(n-k)} \begin{bmatrix} t \\ h \end{bmatrix} \sum_{s=h}^{m(n-k)} \begin{bmatrix} m(n-k) - h \\ s-h \end{bmatrix} \begin{bmatrix} mn-s \\ mn-k \end{bmatrix} (-1)^{s-h} q^{\binom{s-h}{2}} \right) \cdot \left(1 - \frac{(q^{k}-1)(q^{mn-k}-1)}{2(q^{mn}-q^{mn-k})} \right)$$

The RHS goes to 1/2 as $q \rightarrow +\infty$ and to $1/2(q/(q-1)-(q-1)^2)$ as $m \rightarrow +\infty$.

Corollary (Byrne-R.)

Let $m \ge n \ge 2$ and let $1 \le k \le mn - 1$ be integers.

- If *m* does not divide *k*, then there is no *k*-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If *m* divides *k*, then

$$\liminf_{q \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \geq 1/2.$$

$$\liminf_{m \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \ \geq \ \frac{1}{2} \left(\frac{q}{q-1} - (q-1)^{-2} \right) \ \geq \ 1/2.$$

Matrix MRD codes are not dense

Corollary (Byrne-R.)

Let $m \ge n \ge 2$ and let $1 \le k \le mn - 1$ be integers.

- If *m* does not divide *k*, then there is no *k*-dimensional MRD code $\mathscr{C} \leq \mathbb{F}_{q}^{n \times m}$.
- If *m* divides *k*, then

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \geq 1/2.$$

$$\liminf_{m \to +\infty} \frac{\# \text{ of } k \text{-dim non-MRD codes in } \mathbb{F}_q^{n \times m}}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^{n \times m}} \ \geq \ \frac{1}{2} \left(\frac{q}{q-1} - (q-1)^{-2} \right) \ \geq \ 1/2.$$

Matrix MRD codes are not dense

Non-density was also shown by Antrobus/Gluesing-Luerssen with different methods.

We study:

• ...

- Density of codes that are **optimal** (MDS, MRD, MRD)
- Density of codes of bounded minimum distance
- Density of codes that meet the *redundancy bound* for their covering radius
- Density of matrix codes that meet the *initial set bound* for their covering radius
- Density of optimal codes within maximal codes (with respect to inclusion)

Example of question

How many codes $\mathscr{C} \leq \mathbb{F}_a^n$ are there of dimension k and $d_{\mathsf{H}}(\mathscr{C}) > d$?

Example of question

How many codes $\mathscr{C} \leq \mathbb{F}_{q}^{n}$ are there of dimension k and $d_{H}(\mathscr{C}) > d$?

Why?

- valid math question
- applications to density problems
- randomized constructions of codes

Example of question

How many codes $\mathscr{C} \leq \mathbb{F}_q^n$ are there of dimension k and $d_{\mathsf{H}}(\mathscr{C}) > d$?

Why?

- valid math question
- applications to density problems
- randomized constructions of codes

Theorem (Dowling 1971, Zaslavsky 1987)

Counting codes \leftarrow computing the ch. polynomials of certain geometric lattices.

Example of question

How many codes $\mathscr{C} \leq \mathbb{F}_q^n$ are there of dimension k and $d_{\mathsf{H}}(\mathscr{C}) > d$?

Why?

- valid math question
- applications to density problems
- randomized constructions of codes

Theorem (Dowling 1971, Zaslavsky 1987)

Counting codes \leftarrow computing the ch. polynomials of certain geometric lattices.

In particular, of higher-weight Dowling lattices (abbreviated HWDLs).

$\mathscr{H}(q, n, d)$ is a sublattice of the lattice of subspaces of \mathbb{F}_q^n .

Definition

 $\mathscr{H}(q, n, d)$ consists of those subspaces of \mathbb{F}_q^n that have a basis made of vectors of Hamming weight $\leq d$, ordered by inclusion.

$\mathscr{H}(q, n, d)$ is a sublattice of the lattice of subspaces of \mathbb{F}_q^n .

Definition

 $\mathscr{H}(q, n, d)$ consists of those subspaces of \mathbb{F}_q^n that have a basis made of vectors of Hamming weight $\leq d$, ordered by inclusion.

- Introduced by Dowling in 1971
- Studied by Dowling, Zaslavsky, Bonin, Kung, Brini, Games, ...
- To date, still very little is known about HWDLs
- Closely related to Segre's conjecture, open since the 50s.

$\mathscr{H}(q, n, d)$ is a sublattice of the lattice of subspaces of \mathbb{F}_q^n .

Definition

 $\mathscr{H}(q, n, d)$ consists of those subspaces of \mathbb{F}_q^n that have a basis made of vectors of Hamming weight $\leq d$, ordered by inclusion.

- Introduced by Dowling in 1971
- Studied by Dowling, Zaslavsky, Bonin, Kung, Brini, Games, ...
- To date, still very little is known about HWDLs
- Closely related to Segre's conjecture, open since the 50s.

Examples

- For d = 1, $\mathscr{H}(q, n, d)$ is the Boolean algebra of subsets of $\{1, ..., n\}$
- For d = 2, $\mathcal{H}(q, n, d)$ is isomorphic to the *q*-analogue of the partition lattice (Dowling '73)

Studying these lattices is an old open problem in combinatorics.

HWDLs

Theorem (R., 2019)

The following are equivalent:

- (partial) knowledge of the number of codes with $d_{\mathsf{H}}(\mathscr{C}) > d$
- (partial) knowledge of the Whitney numbers of HWDL's

HWDLs

Theorem (R., 2019)

The following are equivalent:

- (partial) knowledge of the number of codes with $d_{\mathsf{H}}(\mathscr{C}) > d$
- (partial) knowledge of the Whitney numbers of HWDL's

More precisely, let $\alpha_k(q, n, d) = \#\{\mathscr{C} \leq \mathbb{F}_q^n \mid \dim(C) = k, d_{\mathsf{H}}(\mathscr{C}) > d\}.$ Then

$$\begin{aligned} \alpha_k(q,n,d) &= \sum_{i=0}^k w_i(q,n,d) \begin{bmatrix} n-i \\ k-i \end{bmatrix}_q & \text{for } 0 \le k \le n \\ w_i(q,n,d) &= \sum_{k=0}^i \alpha_k(q,n,d) \begin{bmatrix} n-k \\ i-k \end{bmatrix}_q (-1)^{i-k} q^{\binom{i-k}{2}} & \text{for } 0 \le i \le n \end{aligned}$$

Recall: the *i*-th Whitney number of $\mathscr{L} = \mathscr{H}(q, n, d)$ is

$$w_i(q,n,d) = \sum_{\mathsf{rk}(x)=i} \mu_{\mathscr{L}}(0,x)$$

Theorem (R., 2019)

For all $n \ge 9$ we have

$$-w_{3}(2,n,3) = \sum_{1 \le \ell_{1} < \ell_{2} < \ell_{3} \le n-2} \left(\prod_{j=1}^{3} \binom{n-\ell_{j}-9+3j}{2} \right) + 8\binom{n}{3} \sum_{s=3}^{8} \binom{n-3}{n-s} (-1)^{s-3} \\ + 106\binom{n}{4} \sum_{s=4}^{8} \binom{n-4}{n-s} (-1)^{s-4} + 820\binom{n}{5} \sum_{s=5}^{8} \binom{n-5}{n-s} (-1)^{s-5} \\ + 4565\binom{n}{6} \sum_{s=6}^{8} \binom{n-6}{n-s} (-1)^{s-6} \\ + 19810\binom{n}{8} \sum_{s=7}^{8} \binom{n-7}{n-s} (-1)^{s-7} + 70728\binom{n}{8}.$$

Theorem (R., 2019)

Let $n \ge 6$. We have

$$\begin{split} w_2(q,n,3) &= \frac{1}{72}q^4n^6 - \frac{1}{12}q^4n^5 + \frac{1}{18}q^4n^4 + \frac{1}{2}q^4n^3 - \frac{77}{72}q^4n^2 + \frac{7}{12}q^4n - \frac{1}{18}q^3n^6 \\ &+ \frac{5}{12}q^3n^5 - \frac{49}{72}q^3n^4 - \frac{7}{6}q^3n^3 + \frac{269}{72}q^3n^2 - \frac{9}{4}q^3n + \frac{1}{12}q^2n^6 - \frac{3}{4}q^2n^5 \\ &+ 2q^2n^4 - \frac{7}{12}q^2n^3 - \frac{43}{12}q^2n^2 + \frac{17}{6}q^2n - \frac{1}{18}qn^6 + \frac{7}{12}qn^5 - \frac{157}{72}qn^4 \\ &+ \frac{19}{6}qn^3 - \frac{55}{72}qn^2 - \frac{3}{4}qn + \frac{1}{72}n^6 - \frac{1}{6}n^5 + \frac{29}{36}n^4 - \frac{23}{12}n^3 + \frac{157}{72}n^2 - \frac{11}{12}n. \end{split}$$

HWDLs

Theorem (R., 2019)

For all integers $n \ge d \ge 2$ and any prime power q,

$$\begin{split} w_{2}(q,n,d) &= (q^{n-1}-1)\sum_{j=1}^{d} \binom{n}{j}(q-1)^{j-2} - \sum_{1 \le \ell_{1} < \ell_{2} \le n} \left[q^{n-\ell_{1}-1} \left(\sum_{j=0}^{d-1} \binom{n-\ell_{2}}{j}(q-1)^{j} \right) \right. \\ &+ \sum_{j=d}^{n-\ell_{2}} \sum_{h=0}^{d-1} \binom{n-\ell_{2}}{j} \binom{n-\ell_{1}-1}{h}(q-1)^{j+h} \\ &+ \sum_{s=d}^{n-\ell_{2}} \sum_{t=0}^{d-2} \binom{n-\ell_{2}}{s} \binom{n-\ell_{1}-1-s}{t}(q-1)^{s+t} \sum_{v=d-t}^{s} \gamma_{q}(s,s-d+t+2,v) \right], \end{split}$$

where the $\gamma_a(b, c, v)$'s are the agreement numbers.

HWDLs

Theorem (R., 2019)

For all integers $n \ge d \ge 2$ and any prime power q,

$$\begin{split} w_{2}(q,n,d) &= (q^{n-1}-1)\sum_{j=1}^{d} \binom{n}{j}(q-1)^{j-2} - \sum_{1 \le \ell_{1} < \ell_{2} \le n} \left[q^{n-\ell_{1}-1} \left(\sum_{j=0}^{d-1} \binom{n-\ell_{2}}{j}(q-1)^{j} \right) \right. \\ &+ \sum_{j=d}^{n-\ell_{2}} \sum_{h=0}^{d-1} \binom{n-\ell_{2}}{j} \binom{n-\ell_{1}-1}{h}(q-1)^{j+h} \\ &+ \sum_{s=d}^{n-\ell_{2}} \sum_{t=0}^{d-2} \binom{n-\ell_{2}}{s} \binom{n-\ell_{1}-1-s}{t}(q-1)^{s+t} \sum_{v=d-t}^{s} \gamma_{q}(s,s-d+t+2,v) \right], \end{split}$$

where the $\gamma_a(b,c,v)$'s are the agreement numbers.

 $\gamma_a(b, c, v)$ is a polynomial in *a* (for any *b*, *c* and *v*) whose coefficients are expressions involving the Bernoulli numbers:

$$\frac{x}{e^{x}-1}=\sum_{n=0}^{+\infty}B_{n}\frac{x^{n}}{n!}.$$

 \rightarrow **polynomiality** in q of $w_2(q, n, d)$ (R. 2019)

Theorem (Folklore)

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Theorem (R., 2019)

Let
$$n \ge k \ge 1$$
 be integers. We have

$$\frac{\# \text{ of } k \text{-dim non-MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} \sim \binom{n}{k} q^{-1} \quad \text{ as } q \to +\infty.$$

Theorem (Folklore)

Let $n \ge k \ge 1$ be integers. We have

$$\lim_{q \to +\infty} \frac{\# \text{ of } k \text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} = 1.$$

Theorem (R., 2019)

Let $n \ge k \ge 1$ be integers. We have $\frac{\# \text{ of } k \text{-dim non-MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k \text{-dim codes in } \mathbb{F}_q^n} \sim \binom{n}{k} q^{-1} \quad \text{ as } q \to +\infty.$

Thank you very much!