Adversarial Network Coding

Alberto Ravagnani

University College Dublin

Paris 8, December 2018
joint work with Frank R. Kschischang (UofT)

What is network coding about?

Network coding: data transmission over networks.

What is network coding about?

Network coding: data transmission over networks.

What is network coding about?

Network coding: data transmission over networks.

- One source S attempts to sends messages $m_{1}, \ldots, m_{k} \in \mathbb{F}_{q}^{n}$.
- The sinks demand all the messages (multicast).
- What about the intermediate nodes?

What is network coding about?

Network coding: data transmission over networks.

- One source S attempts to sends messages $m_{1}, \ldots, m_{k} \in \mathbb{F}_{q}^{n}$.
- The sinks demand all the messages (multicast).
- What about the intermediate nodes?

Goal

Maximize the number of messages that are transmitted to all sinks (rate).
Key idea: allow the nodes to perform operations on the received inputs.

The "Butterfly" network

This strategy is optimal: there is no better strategy!

A mathematical framework for Adversarial Network Coding

Scenario

multiple sources (not just one) + one or multiple adversaries.

A mathematical framework for Adversarial Network Coding

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:
(1) Give mathematical definitions for:

- network capacity (maximum rate),
- communication scheme,
- network adversary,
- ...

A mathematical framework for Adversarial Network Coding

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:
(1) Give mathematical definitions for:

- network capacity (maximum rate),
- communication scheme,
- network adversary,
- ...
rate $=$ the max. \# of msg that can be transmitted to all sinks per channel use

A mathematical framework for Adversarial Network Coding

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:
(1) Give mathematical definitions for:

- network capacity (maximum rate),
- communication scheme,
- network adversary,
- ...

N rate $=$ the max. \# of msg that can be transmitted to all sinks per channel use we are not happy with this

A mathematical framework for Adversarial Network Coding

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:
(1) Give mathematical definitions for:

- network capacity (maximum rate),
- communication scheme,
- network adversary,
- ...

N rate $=$ the max. \# of msg that can be transmitted to all sinks per channel use we are not happy with this
(2) Provide formal tools to derive new upper bounds for the capacity of a network.
(3) Cover various communication scenarios.

A mathematical framework for Adversarial Network Coding

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:
(1) Give mathematical definitions for:

- network capacity (maximum rate),
- communication scheme,
- network adversary,
- ...

N rate $=$ the max. \# of msg that can be transmitted to all sinks per channel use we are not happy with this
(2) Provide formal tools to derive new upper bounds for the capacity of a network.
(3) Cover various communication scenarios.

Remark

We do this in part by mathematizing and extending ideas of:
... Shannon, Cai, Li, Yeung, Yang, Zhang, Jaggi, Langberg, Katti, Ho, Katabi, Médard, Effros, Nutman, Wang, Silva, Kschischang, Kœtter, Siavoshani, Diggavi, Fragouli, Kœrner, Orlitsky, ...

Mathematical model for Adversarial Network Coding

Edge-specific adversaries:

Mathematical model for Adversarial Network Coding

Edge-specific adversaries:

Our approach/program:

(1) Adversarial point-to-point channels (no networks).
(2) Operations with channels (product, concatenation, union).
(3) Hamming-type adversarial channels over cartesian product alphabets.
(9) Adversarial networks: network codes, error-correcting codes, capacity regions.
(0) Porting bounds for Hamming-type channels to networks (general method).
(0) Applications: new upper and lower bounds for some adversarial model.
(1) New communication schemes for some scenarios.

Adversarial channels

Noisy channels: theory of "probability" vs Adversarial channels: theory of "possibility"

Definition

An (adversarial) channel is a map $\Omega: \mathscr{X} \rightarrow 2^{\mathscr{Y}} \backslash\{\emptyset\}$, where \mathscr{X} and \mathscr{Y} are finite non-empty sets called input and output alphabet, respectively.

Notation: $\Omega: \mathscr{X} \xrightarrow{\longrightarrow}$.

Adversarial channels

Noisy channels: theory of "probability" vs Adversarial channels: theory of "possibility"

Definition

An (adversarial) channel is a map $\Omega: \mathscr{X} \rightarrow 2^{\mathscr{Y}} \backslash\{\emptyset\}$, where \mathscr{X} and \mathscr{Y} are finite non-empty sets called input and output alphabet, respectively.

Notation: $\Omega: \mathscr{X} \longrightarrow \nrightarrow \mathscr{Y}$.

Example

Let $\mathscr{X}=\mathscr{Y}:=\{0,1,2,3,4\}$, and let $\Omega: \mathscr{X} \rightarrow \mathscr{Y}$ be the channel defined by

$$
\Omega(0):=\{0,1\}, \quad \Omega(1):=\{1,2\}, \quad \Omega(2):=\{2,3\}, \quad \Omega(3):=\{3,4\}, \quad \Omega(4):=\{4,0\} .
$$

The graph on the right is called the confusability graph.

Adversarial channels

Definition

An (adversarial) channel is a $\operatorname{map} \Omega: \mathscr{X} \rightarrow 2^{\mathscr{Y}} \backslash\{\emptyset\}$, where \mathscr{X} and \mathscr{Y} are finite non-empty sets called input and output alphabet, respectively.

Notation: $\Omega: \mathscr{X} \longrightarrow \mathscr{Y}$.

Example

Let $\mathscr{X}=\mathscr{Y}=\mathscr{A}^{4}$, where \mathscr{A} is a finite set.
Consider an adversary \mathbf{A} able to corrupt at most one of the components indexed by $\{1,3,4\}$ of a 4-tuple

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathscr{A}^{4}
$$

Adversarial channels

Definition

An (adversarial) channel is a $\operatorname{map} \Omega: \mathscr{X} \rightarrow 2^{\mathscr{Y}} \backslash\{\emptyset\}$, where \mathscr{X} and \mathscr{Y} are finite non-empty sets called input and output alphabet, respectively.

Notation: $\Omega: \mathscr{X} \rightarrow-\mathscr{Y}$.

Example

Let $\mathscr{X}=\mathscr{Y}=\mathscr{A}^{4}$, where \mathscr{A} is a finite set.
Consider an adversary \mathbf{A} able to corrupt at most one of the components indexed by $\{1,3,4\}$ of a 4-tuple

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathscr{A}^{4}
$$

The corresponding channel $\Omega: \mathscr{A}^{4} \longrightarrow \mathscr{A}^{4}$ is given by

$$
\Omega(x)=\left\{y \in \mathscr{A}^{4} \mid y_{2}=x_{2} \text { and } \mathrm{d}_{\mathrm{H}}(x, y) \leq 1\right\} \quad \text { for all } x \in \mathscr{A}^{4}
$$

where d_{H} is the Hamming distance.

(One-shot) capacity

Definition

Let $\Omega: \mathscr{X} \rightarrow \mathscr{Y}$ be a channel. A (one-shot) code for Ω is a non-empty subset $\mathscr{C} \subseteq \mathscr{X}$. We say that \mathscr{C} is good for Ω when $\Omega(x) \cap \Omega\left(x^{\prime}\right)=\emptyset$ for all $x, x^{\prime} \in \mathscr{C}$ with $x \neq x^{\prime}$.

The (one-shot) capacity of $\Omega: \mathscr{X} \rightarrow \mathscr{Y}$ is

$$
\mathrm{C}_{1}(\Omega):=\max \left\{\log _{2}|\mathscr{C}|: \mathscr{C} \subseteq \mathscr{X} \text { is good for } \Omega\right\} .
$$

(One-shot) capacity

Definition

Let $\Omega: \mathscr{X} \rightarrow \mathscr{Y}$ be a channel. A (one-shot) code for Ω is a non-empty subset $\mathscr{C} \subseteq \mathscr{X}$. We say that \mathscr{C} is good for Ω when $\Omega(x) \cap \Omega\left(x^{\prime}\right)=\emptyset$ for all $x, x^{\prime} \in \mathscr{C}$ with $x \neq x^{\prime}$.

The (one-shot) capacity of $\Omega: \mathscr{X} \rightarrow \mathscr{Y}$ is

$$
\mathrm{C}_{1}(\Omega):=\max \left\{\log _{2}|\mathscr{C}|: \mathscr{C} \subseteq \mathscr{X} \text { is good for } \Omega\right\}
$$

Example

Let $\mathscr{X}=\mathscr{Y}:=\{0,1,2,3,4\}$, and let $\Omega: \mathscr{X} \rightarrow \mathscr{Y}$ be the channel defined by

$$
\Omega(0):=\{0,1\}, \quad \Omega(1):=\{1,2\}, \quad \Omega(2):=\{2,3\}, \quad \Omega(3):=\{3,4\}, \quad \Omega(4):=\{4,0\} .
$$

(One-shot) capacity

Definition

Let $\Omega: \mathscr{X} \rightarrow \mathscr{Y}$ be a channel. A (one-shot) code for Ω is a non-empty subset $\mathscr{C} \subseteq \mathscr{X}$. We say that \mathscr{C} is good for Ω when $\Omega(x) \cap \Omega\left(x^{\prime}\right)=\emptyset$ for all $x, x^{\prime} \in \mathscr{C}$ with $x \neq x^{\prime}$.

The (one-shot) capacity of $\Omega: \mathscr{X} \rightarrow \mathscr{Y}$ is

$$
\mathrm{C}_{1}(\Omega):=\max \left\{\log _{2}|\mathscr{C}|: \mathscr{C} \subseteq \mathscr{X} \text { is good for } \Omega\right\}
$$

Example

Let $\mathscr{X}=\mathscr{Y}:=\{0,1,2,3,4\}$, and let $\Omega: \mathscr{X} \rightarrow \mathscr{Y}$ be the channel defined by

$$
\Omega(0):=\{0,1\}, \quad \Omega(1):=\{1,2\}, \quad \Omega(2):=\{2,3\}, \quad \Omega(3):=\{3,4\}, \quad \Omega(4):=\{4,0\} .
$$

We have $C_{1}(\Omega)=\log _{2}(2)=1$.

Capacities

We study various notions of capacity of an adversarial channel:

- (One-shot) capacity, modeling one use of the channel;
- Zero-error capacity, modeling multiple uses of channels;
- Compound zero-error capacity, modeling adversaries with certain restrictions.

Concatenation of channels

Definition

Let $\Omega_{1}: \mathscr{X}_{1} \longrightarrow \mathscr{Y}_{1}$ and $\Omega_{2}: \mathscr{X}_{2} \longrightarrow \mathscr{Y}_{2}$ be channels, with $\mathscr{Y}_{1} \subseteq \mathscr{X}_{2}$.
The concatenation of Ω_{1} and Ω_{2} is the channel $\Omega_{1} \Omega_{2}: \mathscr{X}_{1} \rightarrow \mathscr{Y}_{2}$ defined by

$$
\left(\Omega_{1}-\Omega_{2}\right)(x):=\bigcup_{y \in \Omega_{1}(x)} \Omega_{2}(y) \quad \text { for all } x \in \mathscr{X}_{1}
$$

Diagram: $\quad \mathscr{X}_{1} \xrightarrow{\Omega_{1}} \mathscr{Y}_{1} \subseteq \mathscr{X}_{2} \xrightarrow{\Omega_{2}} \mathscr{Y}_{2}$.

Concatenation of channels

Definition

Let $\Omega_{1}: \mathscr{X}_{1} \longrightarrow \mathscr{Y}_{1}$ and $\Omega_{2}: \mathscr{X}_{2} \longrightarrow \mathscr{Y}_{2}$ be channels, with $\mathscr{Y}_{1} \subseteq \mathscr{X}_{2}$.
The concatenation of Ω_{1} and Ω_{2} is the channel $\Omega_{1} \Omega_{2}: \mathscr{X}_{1} \rightarrow \mathscr{Y}_{2}$ defined by

$$
\left(\Omega_{1} \Omega_{2}\right)(x):=\bigcup_{y \in \Omega_{1}(x)} \Omega_{2}(y) \quad \text { for all } x \in \mathscr{X}_{1} .
$$

Diagram: $\quad \mathscr{X}_{1} \xrightarrow{\Omega_{1}} \mathscr{Y}_{1} \subseteq \mathscr{X}_{2} \xrightarrow{\Omega_{2}} \mathscr{Y}_{2}$.

\triangle
ACHTUNG! The confusability graph of $\Omega_{1} \curvearrowright \Omega_{2}$ is not determined by the confusability graphs of the two channels Ω_{1} and Ω_{2}.

Operations

We study various channels operations:

- product, modeling combined channels uses;
- power, modeling multiple uses of a channel (zero-error capacity);
- concatenation, modeling channels used one after the other;
- union, modeling some restricted adversaries (compound zero-error capacity).

Channels can be combined with each other using these operations in an "algebraic fashion".

What is a communication network?

What is a communication network?

Definition

A (combinational) network is a 4-tuple $\mathscr{N}=(\mathscr{V}, \mathscr{E}, \mathbf{S}, \mathbf{T})$ where:
(1) $(\mathscr{V}, \mathscr{E})$ is a finite directed acyclic multigraph,
(2) $\mathbf{S} \subseteq \mathscr{V}$ is the set of sources,
(3) $\mathbf{T} \subseteq \mathscr{V}$ is the set of terminals or sinks.

What is a communication network?

Definition

A (combinational) network is a 4-tuple $\mathscr{N}=(\mathscr{V}, \mathscr{E}, \mathbf{S}, \mathbf{T})$ where:
(1) $(\mathscr{V}, \mathscr{E})$ is a finite directed acyclic multigraph,
(2) $\mathbf{S} \subseteq \mathscr{V}$ is the set of sources,
(3) $\mathbf{T} \subseteq \mathscr{V}$ is the set of terminals or sinks.
(We allow multiple parallel directed edges). We also assume that the following hold.
(9) $|\mathbf{S}| \geq 1,|\mathbf{T}| \geq 1, \mathbf{S} \cap \mathbf{T}=\emptyset$.
(0) For any $S \in \mathbf{S}$ and $T \in \mathbf{T}$ there exists a directed path from S to T.
(Sources do not have incoming edges, and terminals do not have outgoing edges.
(0) For every vertex $V \in \mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T})$ there exists a directed path from S to V for some $S \in \mathbf{S}$, and a directed path from V to T for some $T \in \mathbf{T}$.

What is a communication network?

Definition

A (combinational) network is a 4-tuple $\mathscr{N}=(\mathscr{V}, \mathscr{E}, \mathbf{S}, \mathbf{T})$ where:
(1) $(\mathscr{V}, \mathscr{E})$ is a finite directed acyclic multigraph,
(2) $\mathrm{S} \subseteq \mathscr{V}$ is the set of sources,
(3) $\mathbf{T} \subseteq \mathscr{V}$ is the set of terminals or sinks.
(We allow multiple parallel directed edges). We also assume that the following hold.
(9) $|\mathbf{S}| \geq 1,|\mathbf{T}| \geq 1, \mathbf{S} \cap \mathbf{T}=\emptyset$.
(0) For any $S \in \mathbf{S}$ and $T \in \mathbf{T}$ there exists a directed path from S to T.
(Sources do not have incoming edges, and terminals do not have outgoing edges.
(0) For every vertex $V \in \mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T})$ there exists a directed path from S to V for some $S \in \mathbf{S}$, and a directed path from V to T for some $T \in \mathbf{T}$.

The elements of \mathscr{V} are called vertices. The elements of $\mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T})$ are the intermediate vertices. We denote the set of incoming and outgoing edges of a $V \in \mathscr{V}$ by $\operatorname{in}(V)$ and out (V), respectively.

Nodes operations and network codes

The edges of a network \mathscr{N} can carry precisely one symbol from a finite set \mathscr{A}, the alphabet.

Definition

A network code \mathscr{F} for \mathscr{N} is a family of functions $\{\mathscr{F} V: V \in \mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T})\}$, where

$$
\mathscr{F} V: \mathscr{A}^{|\operatorname{lin}(V)|} \rightarrow \mathscr{A}^{|\operatorname{lout}(V)|} \quad \text { for all } V \in \mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T}) .
$$

Nodes operations and network codes

The edges of a network \mathscr{N} can carry precisely one symbol from a finite set \mathscr{A}, the alphabet.

Definition

A network code \mathscr{F} for \mathscr{N} is a family of functions $\{\mathscr{F} V: V \in \mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T})\}$, where

$$
\mathscr{F} V: \mathscr{A}^{|\operatorname{lin}(V)|} \rightarrow \mathscr{A}^{\mid \text {out }(V) \mid} \quad \text { for all } V \in \mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T}) .
$$

ACHTUNG! This definition is not good (yet).

Let $a \in \mathscr{A}$ and $\mathscr{F}_{V}(a)=(b, c) \in \mathscr{A}^{2}$

Nodes operations and network codes

The edges of a network \mathscr{N} can carry precisely one symbol from a finite set \mathscr{A}, the alphabet.

Definition

A network code \mathscr{F} for \mathscr{N} is a family of functions $\{\mathscr{F} V: V \in \mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T})\}$, where

$$
\mathscr{F} V: \mathscr{A}^{|\operatorname{lin}(V)|} \rightarrow \mathscr{A}^{\mid \text {out }(V) \mid} \quad \text { for all } V \in \mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T}) .
$$

ACHTUNG! This definition is not good (yet).

Let $a \in \mathscr{A} \quad$ and $\quad \mathscr{F} V(a)=(b, c) \in \mathscr{A}^{2}$

The edges of \mathscr{N} can be partially ordered: $e_{i} \preceq e_{j}$ is there exists a path in \mathscr{N} of the form

Nodes operations and network codes

The edges of a network \mathscr{N} can carry precisely one symbol from a finite set \mathscr{A}, the alphabet.

Definition

A network code \mathscr{F} for \mathscr{N} is a family of functions $\{\mathscr{F} V: V \in \mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T})\}$, where

$$
\mathscr{F} V: \mathscr{A}^{|\operatorname{lin}(V)|} \rightarrow \mathscr{A}^{\mid \text {out }(V) \mid} \quad \text { for all } V \in \mathscr{V} \backslash(\mathbf{S} \cup \mathbf{T}) .
$$

ACHTUNG! This definition is not good (yet).

Let $a \in \mathscr{A}$ and $\mathscr{F}_{V}(a)=(b, c) \in \mathscr{A}^{2}$

The edges of \mathscr{N} can be partially ordered: $e_{i} \preceq e_{j}$ is there exists a path in \mathscr{N} of the form

Theorem

The order \preceq can be extended to a total order.
We fix such a total oder and denote it by \leq. This resolves the ambiguity.

Network channels

Network channels

Let $(\mathscr{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ is the set of network sources.
- $J \subseteq\{1, \ldots, N\}$ is a set of source indices, $\mathbf{S}_{J}=\left\{S_{i} \mid i \in J\right\}$.
- \mathscr{F} is a network code.
- The sources $\left\{S_{i} \mid i \notin J\right\}$ transmit fixed messages $\bar{x} \in \prod_{i \notin J} \mathscr{A}^{\text {lout }\left(S_{i}\right) \mid \text {. }}$
- $\mathscr{E}^{\prime} \subseteq \mathscr{E}$ is a non-empty set of edges.

Network channels

Let $(\mathscr{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ is the set of network sources.
- $J \subseteq\{1, \ldots, N\}$ is a set of source indices, $\mathbf{S}_{J}=\left\{S_{i} \mid i \in J\right\}$.
- \mathscr{F} is a network code.
- The sources $\left\{S_{i} \mid i \notin J\right\}$ transmit fixed messages $\bar{x} \in \prod_{i \notin J} \mathscr{A}^{\text {lout }\left(S_{i}\right) \mid \text {. }}$
- $\mathscr{E}^{\prime} \subseteq \mathscr{E}$ is a non-empty set of edges.

The channel

$$
\Omega_{\mathscr{F}}^{J}\left[\mathbf{A} ; \mathbf{S}_{J} \rightarrow \mathscr{E}^{\prime} \mid \bar{x}\right]: \prod_{i \in J} \mathscr{A}^{\mid \text {out }\left(S_{i}\right) \mid} \ldots \mathscr{A}^{\left|\mathscr{E}^{\prime}\right|}
$$

describes the transfer

Network channels

Let $(\mathscr{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ is the set of network sources.
- $J \subseteq\{1, \ldots, N\}$ is a set of source indices, $\mathbf{S}_{J}=\left\{S_{i} \mid i \in J\right\}$.
- \mathscr{F} is a network code.
- The sources $\left\{S_{i} \mid i \notin J\right\}$ transmit fixed messages $\bar{x} \in \prod_{i \notin J} \mathscr{A}^{\text {lout }\left(S_{i}\right) \mid \text {. }}$
- $\mathscr{E}^{\prime} \subseteq \mathscr{E}$ is a non-empty set of edges.

The channel

$$
\Omega_{\mathscr{F}}^{J}\left[\mathbf{A} ; \mathbf{S}_{J} \rightarrow \mathscr{E}^{\prime} \mid \bar{x}\right]: \prod_{i \in J} \mathscr{A}^{\mid \text {out }\left(S_{i}\right) \mid} \rightarrow \mathscr{A}^{\left.\right|_{\mathscr{E}} \mid}
$$

describes the transfer

Special case: $\mathscr{E}^{\prime}=\operatorname{in}(T)$, where $T \in \mathbf{T}$ is a terminal.

Example

Consider the following network \mathscr{N} with alphabet \mathscr{A}.
An adversary \mathbf{A} is able to corrupt at most one of the values of the dotted edges of \mathscr{N}.

Example

Consider the following network \mathscr{N} with alphabet \mathscr{A}.
An adversary \mathbf{A} is able to corrupt at most one of the values of the dotted edges of \mathscr{N}.

A network code \mathscr{F} for \mathscr{N} is the assignment of a function $\mathscr{F} V: \mathscr{A}^{3} \rightarrow \mathscr{A}^{4}$.

Example

Consider the following network \mathscr{N} with alphabet \mathscr{A}.
An adversary \mathbf{A} is able to corrupt at most one of the values of the dotted edges of \mathscr{N}.

A network code \mathscr{F} for \mathscr{N} is the assignment of a function $\mathscr{F} v: \mathscr{A}^{3} \rightarrow \mathscr{A}^{4}$.
Let $J:=\{1\}$, and assume that S_{2} emits a fixed element $\bar{x} \in \mathscr{A}$. Let us describe

$$
\Omega_{\mathscr{F}}^{J}\left[\mathbf{A} ; \mathbf{S}_{J} \rightarrow \operatorname{in}(T) \mid \bar{x}\right] .
$$

Example

Consider the following network \mathscr{N} with alphabet \mathscr{A}.
An adversary \mathbf{A} is able to corrupt at most one of the values of the dotted edges of \mathscr{N}.

A network code \mathscr{F} for \mathscr{N} is the assignment of a function $\mathscr{F} v: \mathscr{A}^{3} \rightarrow \mathscr{A}^{4}$.
Let $J:=\{1\}$, and assume that S_{2} emits a fixed element $\bar{x} \in \mathscr{A}$. Let us describe

$$
\Omega_{\mathscr{F}}^{J}\left[\mathbf{A} ; \mathbf{S}_{J} \rightarrow \operatorname{in}(T) \mid \bar{x}\right] .
$$

Remark: we have to say what $\quad \Omega_{\mathscr{F}}^{J}[\mathbf{A} ; \mathbf{S} \rightarrow \operatorname{in}(T)]\left(x_{1}, x_{2}\right) \subseteq \mathscr{A}^{4} \quad$ is for $\left(x_{1}, x_{2}\right) \in \mathscr{A}^{2}$.

Example

Consider the following network \mathscr{N} with alphabet \mathscr{A}.
An adversary \mathbf{A} is able to corrupt at most one of the values of the dotted edges of \mathscr{N}.

A network code \mathscr{F} for \mathscr{N} is the assignment of a function $\mathscr{F} v: \mathscr{A}^{3} \rightarrow \mathscr{A}^{4}$.
Let $J:=\{1\}$, and assume that S_{2} emits a fixed element $\bar{x} \in \mathscr{A}$. Let us describe

$$
\Omega_{\mathscr{F}}^{J}\left[\mathbf{A} ; \mathbf{S}_{J} \rightarrow \operatorname{in}(T) \mid \bar{x}\right] .
$$

Remark: we have to say what $\quad \Omega_{\mathscr{F}}^{J}[\mathbf{A} ; \mathbf{S} \rightarrow \operatorname{in}(T)]\left(x_{1}, x_{2}\right) \subseteq \mathscr{A}^{4} \quad$ is for $\left(x_{1}, x_{2}\right) \in \mathscr{A}^{2}$.

If $\left(x_{1}, x_{2}\right) \in \mathscr{A}^{2}$, and $\bar{z}:=\mathscr{F} v\left(x_{1}, x_{2}, \bar{x}\right) \in \mathscr{A}^{4}$, then

$$
\Omega_{\mathscr{F}}^{J}[\mathbf{A} ; \mathbf{S} \rightarrow \operatorname{in}(T)]\left(x_{1}, x_{2}\right)=\left\{y \in \mathscr{A}^{4} \mid y_{2}=\bar{z}_{2} \quad \text { and } \quad \mathrm{d}_{\mathrm{H}}(y, \bar{z}) \leq 1\right\} .
$$

Capacity region

Definition

- \mathscr{N} a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$.
- \mathbf{T} is the set of terminals.
- A is an adversary.

Capacity region

Definition

- \mathscr{N} a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$.
- \mathbf{T} is the set of terminals.
- A is an adversary.

The (one shot) capacity region of $(\mathscr{N}, \mathbf{A})$ is the set

$$
\mathscr{R}(\mathscr{N}, \mathbf{A}) \subseteq \mathbb{R}_{\geq 0}^{N}
$$

of all the N-tuples $\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ for which there exist:

- a network code \mathscr{F} for \mathscr{N}
- non-empty sets $\mathscr{C}_{i} \subseteq \mathscr{A}^{\text {lout }\left(S_{i}\right) \mid, ~ f o r ~} 1 \leq i \leq N$
with the following properties:
(1) $\log _{|\mathscr{A}|}\left|\mathscr{C}_{i}\right|=\alpha_{i}$,
(2) $\mathscr{C}=\mathscr{C}_{1} \times \cdots \times \mathscr{C}_{N}$ is a good code for each channel $\Omega_{\mathscr{F}}[\mathbf{A} ; \mathbf{S} \rightarrow \operatorname{in}(T)], T \in \mathbf{T}$.

We say that such a pair $(\mathscr{F}, \mathscr{C})$ achieves the rate $\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ in one shot.

Capacity region

Definition

- \mathscr{N} a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$.
- \mathbf{T} is the set of terminals.
- A is an adversary.

The (one shot) capacity region of $(\mathscr{N}, \mathbf{A})$ is the set

$$
\mathscr{R}(\mathscr{N}, \mathbf{A}) \subseteq \mathbb{R}_{\geq 0}^{N}
$$

of all the N-tuples $\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ for which there exist:

- a network code \mathscr{F} for \mathscr{N}
- non-empty sets $\mathscr{C}_{i} \subseteq \mathscr{A}^{\text {lout }\left(S_{i}\right) \mid, ~ f o r ~} 1 \leq i \leq N$
with the following properties:
(1) $\log _{|\mathscr{A}|}\left|\mathscr{C}_{i}\right|=\alpha_{i}$,
(2) $\mathscr{C}=\mathscr{C}_{1} \times \cdots \times \mathscr{C}_{N}$ is a good code for each channel $\Omega_{\mathscr{F}}[\mathbf{A} ; \mathbf{S} \rightarrow \operatorname{in}(T)], T \in \mathbf{T}$.

We say that such a pair $(\mathscr{F}, \mathscr{C})$ achieves the rate $\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ in one shot.

These conditions guarantee that the sources can transmit in one shot to each of the sinks $\alpha_{1}+\cdots+\alpha_{N}$ alphabet symbols, α_{i} of which are emitted by S_{i}, for $1 \leq i \leq N$.

Other capacities

We study various notions of capacity region:

- (one shot) capacity region, modeling one network use;
- zero-error capacity region, modeling multiple uses of the network;
- compound zero-error capacity region, modeling certain restrictions on the adversaries.

Decomposition idea

Let $(\mathscr{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ the sources, $J \subseteq\{1, \ldots, N\}$ and $\mathbf{S}_{J}=\left\{S_{i} \mid i \in J\right\}$.
- \mathscr{F} is a network code.
- The sources $\left\{S_{i} \mid i \notin J\right\}$ transmit fixed messages $\bar{x} \in \prod_{i \notin J} \mathscr{A}^{\mid \text {out }\left(S_{i}\right) \mid}$.
- $\mathscr{E}^{\prime} \subseteq \mathscr{E}$ is an edge-cut that separates \mathbf{S}_{J} from $T \in \mathbf{T}$.

Decomposition idea

Let $(\mathscr{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ the sources, $J \subseteq\{1, \ldots, N\}$ and $\mathbf{S}_{J}=\left\{S_{i} \mid i \in J\right\}$.
- \mathscr{F} is a network code.
- The sources $\left\{S_{i} \mid i \notin J\right\}$ transmit fixed messages $\bar{x} \in \prod_{i \notin J} \mathscr{A}^{\mid \text {out }\left(S_{i}\right) \mid \text {. }}$
- $\mathscr{E}^{\prime} \subseteq \mathscr{E}$ is an edge-cut that separates \mathbf{S}_{J} from $T \in \mathbf{T}$.

Decomposition idea

Let $(\mathscr{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ the sources, $J \subseteq\{1, \ldots, N\}$ and $\mathbf{S}_{J}=\left\{S_{i} \mid i \in J\right\}$.
- \mathscr{F} is a network code.
- The sources $\left\{S_{i} \mid i \notin J\right\}$ transmit fixed messages $\bar{x} \in \prod_{i \notin J} \mathscr{A}^{\operatorname{lout}\left(S_{i}\right) \mid}$.
- $\mathscr{E}^{\prime} \subseteq \mathscr{E}$ is an edge-cut that separates \mathbf{S}_{J} from $T \in \mathbf{T}$.

$\mathrm{C}_{1}\left(\Omega_{\mathscr{F}}^{J}\left[\mathbf{A} ; \mathbf{S}_{J} \rightarrow T \mid \bar{x}\right]\right)$

Decomposition idea

Let $(\mathscr{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ the sources, $J \subseteq\{1, \ldots, N\}$ and $\mathbf{S}_{J}=\left\{S_{i} \mid i \in J\right\}$.
- \mathscr{F} is a network code.
- The sources $\left\{S_{i} \mid i \notin J\right\}$ transmit fixed messages $\bar{x} \in \prod_{i \notin J} \mathscr{A}^{\operatorname{lout}\left(S_{i}\right) \mid}$.
- $\mathscr{E}^{\prime} \subseteq \mathscr{E}$ is an edge-cut that separates \mathbf{S}_{J} from $T \in \mathbf{T}$.

$$
\mathrm{C}_{1}\left(\Omega_{\mathscr{F}}^{J}\left[\mathbf{A} ; \mathbf{S}_{J} \rightarrow T \mid \bar{x}\right]\right) \leq \mathrm{C}_{1}\left(\Omega_{\mathscr{F}}^{J}\left[\mathbf{S}_{J} \rightarrow \mathscr{E}^{\prime} \mid \bar{x}\right] \vee \Omega\left[\mathbf{A} ; \mathscr{E}^{\prime} \rightarrow \mathscr{E}^{\prime}\right] \vee \Omega_{\mathscr{F}}^{J}\left[\mathscr{E}^{\prime} \rightarrow T \mid \bar{x}\right]\right)
$$

Decomposition idea

Let $(\mathscr{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ the sources, $J \subseteq\{1, \ldots, N\}$ and $\mathbf{S}_{J}=\left\{S_{i} \mid i \in J\right\}$.
- \mathscr{F} is a network code.
- The sources $\left\{S_{i} \mid i \notin J\right\}$ transmit fixed messages $\bar{x} \in \prod_{i \notin J} \mathscr{A}^{\operatorname{lout}\left(S_{i}\right) \mid}$.
- $\mathscr{E}^{\prime} \subseteq \mathscr{E}$ is an edge-cut that separates \mathbf{S}_{J} from $T \in \mathbf{T}$.

$$
\mathrm{C}_{1}\left(\Omega_{\mathscr{F}}^{J}\left[\mathbf{A} ; \mathbf{S}_{J} \rightarrow T \mid \bar{x}\right]\right) \leq \mathrm{C}_{1}\left(\Omega_{\mathscr{F}}^{J}\left[\mathbf{S}_{J} \rightarrow \mathscr{E}^{\prime} \mid \bar{x}\right] \vee \Omega\left[\mathbf{A} ; \mathscr{E}^{\prime} \rightarrow \mathscr{E}^{\prime}\right] \vee \Omega_{\mathscr{F}}^{J}\left[\mathscr{E}^{\prime} \rightarrow T \mid \bar{x}\right]\right)
$$

Proposition (R., Kschischang)

$\mathrm{C}_{1}\left(\Omega_{1}-\Omega_{2}-\Omega_{3}\right) \leq \min _{i=1}^{3} \mathrm{C}_{1}\left(\Omega_{i}\right)$.

Decomposition idea

Let $(\mathscr{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ the sources, $J \subseteq\{1, \ldots, N\}$ and $\mathbf{S}_{J}=\left\{S_{i} \mid i \in J\right\}$.
- \mathscr{F} is a network code.
- The sources $\left\{S_{i} \mid i \notin J\right\}$ transmit fixed messages $\bar{x} \in \prod_{i \notin J} \mathscr{A}^{\mid \text {out }\left(S_{i}\right) \mid \text {. }}$
- $\mathscr{E}^{\prime} \subseteq \mathscr{E}$ is an edge-cut that separates \mathbf{S}_{J} from $T \in \mathbf{T}$.

$$
\mathrm{C}_{1}\left(\Omega_{\mathscr{F}}^{J}\left[\mathbf{A} ; \mathbf{S}_{J} \rightarrow T \mid \bar{x}\right]\right) \leq \mathrm{C}_{1}\left(\Omega_{\mathscr{F}}^{J}\left[\mathbf{S}_{J} \rightarrow \mathscr{E}^{\prime} \mid \bar{x}\right] \vee \Omega\left[\mathbf{A} ; \mathscr{E}^{\prime} \rightarrow \mathscr{E}^{\prime}\right] \vee \Omega_{\mathscr{F}}^{J}\left[\mathscr{E}^{\prime} \rightarrow T \mid \bar{x}\right]\right)
$$

Proposition (R., Kschischang)

$\mathrm{C}_{1}\left(\Omega_{1}-\Omega_{2}-\Omega_{3}\right) \leq \min _{i=1}^{3} \mathrm{C}_{1}\left(\Omega_{i}\right)$. Therefore $\mathrm{C}_{1}\left(\Omega_{\mathscr{F}}^{J}\left[\mathbf{A} ; \mathbf{S}_{J} \rightarrow T \mid \bar{x}\right]\right) \leq \mathrm{C}_{1}\left(\Omega\left[\mathbf{A} ; \mathscr{E}^{\prime} \rightarrow \mathscr{E}^{\prime}\right]\right)$.

Remarks

Remarks

- This can be made rigorous.
- Using channel operations, this decomposition idea can be extended to:
- zero-error capacity,
- compound zero-error capacity.
- This allows to port bounds for channels $\Omega: \mathscr{A}^{n} \rightarrow \mathscr{A}^{n}$ to networks in a systematic way.
- This applies to single source and multiple sources networks.
- We study also erasure adversaries (alphabet extensions).

Bounds

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ and set of terminals \mathbf{T}. Set $I:=\{1, \ldots, N\}$. Denote by A an aversary:

- having access to all the network edges \mathscr{E},
- able to corrupt at most t of them, and erase up to e of them.

Bounds

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ and set of terminals \mathbf{T}. Set $l:=\{1, \ldots, N\}$. Denote by A an aversary:

- having access to all the network edges \mathscr{E},
- able to corrupt at most t of them, and erase up to e of them.

For all $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathscr{R}(\mathscr{N}, \mathbf{A})$ and for all non-empty $J \subseteq I$ we have

$$
\sum_{i \in J} \alpha_{i} \leq \min _{T \in \mathbf{T}} \max \left\{0, \min -\operatorname{cut}\left(\mathbf{S}_{J}, T\right)-2 t-e\right\}
$$

Bounds

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ and set of terminals \mathbf{T}. Set $I:=\{1, \ldots, N\}$. Denote by A an aversary:

- having access to all the network edges \mathscr{E},
- able to corrupt at most t of them, and erase up to e of them.

For all $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathscr{R}(\mathscr{N}, \mathbf{A})$ and for all non-empty $J \subseteq I$ we have

$$
\sum_{i \in J} \alpha_{i} \leq \min _{T \in \mathbf{T}} \max \left\{0, \min -\operatorname{cut}\left(\mathbf{S}_{J}, T\right)-2 t-e\right\}
$$

and
$\sum_{i \in J} \alpha_{i} \leq \min _{T \in \mathbf{T}} \max \left\{0, \min -\operatorname{cut}\left(\mathbf{S}_{J}, T\right)-\log _{|\mathscr{A}|}\left(\sum_{h=0}^{t^{\prime}}\binom{\min -\operatorname{cut}\left(\mathbf{S}_{J}, T\right)}{h}(|\mathscr{A}|-1)^{h}\right)\right\}, t^{\prime}:=\lfloor t+e / 2\rfloor$.

Bounds

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ and set of terminals \mathbf{T}. Set $I:=\{1, \ldots, N\}$. Denote by A an aversary:

- having access to all the network edges \mathscr{E},
- able to corrupt at most t of them, and erase up to e of them.

For all $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathscr{R}(\mathscr{N}, \mathbf{A})$ and for all non-empty $J \subseteq I$ we have

$$
\sum_{i \in J} \alpha_{i} \leq \min _{T \in \mathbf{T}} \max \left\{0, \min -\operatorname{cut}\left(\mathbf{S}_{J}, T\right)-2 t-e\right\}
$$

and
$\sum_{i \in J} \alpha_{i} \leq \min _{T \in \mathbf{T}} \max \left\{0, \min -\operatorname{cut}\left(\mathbf{S}_{J}, T\right)-\log _{|\mathscr{A}|}\left(\sum_{h=0}^{t^{\prime}}\binom{\min -\operatorname{cut}\left(\mathbf{S}_{J}, T\right)}{h}(|\mathscr{A}|-1)^{h}\right)\right\}, t^{\prime}:=\lfloor t+e / 2\rfloor$.

These are obtained by "porting" the Singleton and the Hamming bounds, respectively.
Remark: any other bound from classical Coding Theory can be ported.

Bounds

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ and set of terminals \mathbf{T}. Set $I:=\{1, \ldots, N\}$. Denote by \mathbf{A} a set of L aversaries $\mathbf{A}_{1}, \ldots, \mathbf{A}_{L}$ such that:

- adversary ℓ has access to $\mathscr{E}_{\ell} \subseteq \mathscr{E}$ for all $1 \leq \ell \leq L$,
- the \mathscr{E}_{ℓ} 's are pairwise disjoint,
- adversary ℓ is able to corrupt at most t_{ℓ} edges, and erase at most e_{ℓ} edges.

Bounds

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ and set of terminals \mathbf{T}. Set $I:=\{1, \ldots, N\}$.
Denote by \mathbf{A} a set of L aversaries $\mathbf{A}_{1}, \ldots, \mathbf{A}_{L}$ such that:

- adversary ℓ has access to $\mathscr{E}_{\ell} \subseteq \mathscr{E}$ for all $1 \leq \ell \leq L$,
- the \mathscr{E}_{ℓ} 's are pairwise disjoint,
- adversary ℓ is able to corrupt at most t_{ℓ} edges, and erase at most e_{ℓ} edges.

For all $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathscr{R}(\mathscr{N}, \mathbf{A})$ and for all non-empty $J \subseteq I$ we have

$$
\sum_{i \in J} \alpha_{i} \leq \min _{T \in \mathbf{T}} \min \left\{\left|\mathscr{E}^{\prime}\right|-\sum_{\ell=1}^{L} \min \left\{2 t_{\ell}+e_{\ell},\left|\mathscr{E}^{\prime} \cap \mathscr{E}_{\ell}\right|\right\}: \mathscr{E}^{\prime} \subseteq \mathscr{E} \text { is a cut between } \mathbf{S}_{J} \text { and } T\right\} .
$$

Other results

- Similar bounds can be proved for:
- zero-error capacity region,
- compound zero-error capacity region.
- These bounds apply to single source and multiple sources networks.
- These bounds show that when the adversary is restricted, capacity cannot be achieved in general with linear network coding.
- We give capacity-achieving schemes for some adversarial scenarios.

Lower bounds

Recall:

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ and set of terminals \mathbf{T}. Set $I:=\{1, \ldots, N\}$. Denote by A an aversary:

- having access to all the network edges \mathscr{E},
- able to corrupt at most t of them.

For all $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathscr{R}(\mathscr{N}, \mathbf{A})$ and all $\emptyset \neq J \subseteq I$ we have $\sum_{i \in J} \alpha_{i} \leq \min _{T \in \mathbf{T}} \max \left\{0, \min -\operatorname{cut}\left(\mathbf{S}_{J}, T\right)-2 t\right\}$.

Lower bounds

Recall:

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S}=\left\{S_{1}, \ldots, S_{N}\right\}$ and set of terminals \mathbf{T}. Set $I:=\{1, \ldots, N\}$. Denote by A an aversary:

- having access to all the network edges \mathscr{E},
- able to corrupt at most t of them.

For all $\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathscr{R}(\mathscr{N}, \mathbf{A})$ and all $\emptyset \neq J \subseteq I$ we have $\sum_{i \in J} \alpha_{i} \leq \min _{T \in \mathbf{T}} \max \left\{0, \min -\operatorname{cut}\left(\mathbf{S}_{J}, T\right)-2 t\right\}$.

Theorem (R., Kschischang)

Under the same hypotheses, we have

$$
\mathscr{R}(\mathscr{N}, \mathbf{A}) \supseteq\left\{\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{N}^{N}: \sum_{i \in J} a_{i} \leq \min _{T \in \mathbf{T}} \max \left\{0, \min -\operatorname{cut}\left(\mathbf{S}_{J}, T\right)-2 t\right\} \text { for all } \emptyset \neq J \subseteq I\right\}
$$

provided that $\mathscr{A}=\mathbb{F}_{q}^{m}$, and q and m are sufficiently large.

A different scheme

For $N=2$ sources and 1 terminal, to achieve a rate $\left(a_{1}, a_{2}\right)$ the previous scheme requires as network alphabet

$$
\mathbb{F}_{q}^{m} \quad \text { where } \quad m=\left(a_{1}-2 t\right) \cdot\left(a_{2}-2 t\right)
$$

A different scheme

For $N=2$ sources and 1 terminal, to achieve a rate $\left(a_{1}, a_{2}\right)$ the previous scheme requires as network alphabet

$$
\mathbb{F}_{q}^{m} \quad \text { where } \quad m=\left(a_{1}-2 t\right) \cdot\left(a_{2}-2 t\right)
$$

Theorem (R., Kschischang)

There exists a scheme (with efficient coding and decoding) for the same problem parameters that requires as network alphabet
\mathbb{F}_{q}^{m}
where
$m=a_{1}+a_{2}-2 t$.

A different scheme

For $N=2$ sources and 1 terminal, to achieve a rate $\left(a_{1}, a_{2}\right)$ the previous scheme requires as network alphabet

$$
\mathbb{F}_{q}^{m} \quad \text { where } \quad m=\left(a_{1}-2 t\right) \cdot\left(a_{2}-2 t\right)
$$

Theorem (R., Kschischang)

There exists a scheme (with efficient coding and decoding) for the same problem parameters that requires as network alphabet
$\mathbb{F}_{q}^{m} \quad$ where $\quad m=a_{1}+a_{2}-2 t$.

Thank you very much!

