Adversarial Network Coding

Alberto Ravagnani

University College Dublin

Paris 8, December 2018

joint work with Frank R. Kschischang (UofT)

Alberto Ravagnani (UCD)

Adversarial Network Coding

크 Paris, Dec. 2018 0/20

900

メロト メロト メヨト メヨト

Network coding: data transmission over networks.

メロト メポト メモト メモト

DQC

Network coding: data transmission over networks.

receivers

メロト メロト メヨト メ

990

Network coding: data transmission over networks.

receivers

- One source S attempts to sends messages $m_1,...,m_k\in \mathbb{F}_q^n$.
- The sinks demand all the messages (multicast).
- What about the intermediate nodes?

Sar

・ロト ・日 ・ ・ ヨ ・ ・

Network coding: data transmission over networks.

• One source S attempts to sends messages $m_1, ..., m_k \in \mathbb{F}_a^n$.

- The sinks demand all the messages (multicast).
- What about the intermediate nodes?

Goal

Maximize the number of messages that are transmitted to all sinks (rate).

Key idea: allow the nodes to perform operations on the received inputs.

Alberto Ravagnani (UCD)

Paris, Dec. 2018 1/20

Sar

・ロト ・日 ・ ・ ヨト ・ ヨ

590

590

590

990

DQC

This strategy is optimal: there is no better strategy!

DQC

メロト メロト メヨト メヨト

Scenario

multiple sources (not just one) + one or multiple adversaries.

590

メロト メロト メヨト メヨト

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:

- Give mathematical definitions for:
 - network capacity (maximum rate),
 - communication scheme,
 - network adversary,
 - ▶ ...

Sac

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:

- **1** Give mathematical definitions for:
 - network capacity (maximum rate),
 - communication scheme,
 - network adversary,
 - ► ...

rate = the max. # of msg that can be transmitted to all sinks per channel use

<ロト <回ト < 三ト < 三ト

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:

- **1** Give mathematical definitions for:
 - network capacity (maximum rate),
 - communication scheme,
 - network adversary,
 - ► ...

X rate = the max. # of msg that can be transmitted to all sinks per channel use **X** we are not happy with this

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:

- **1** Give mathematical definitions for:
 - network capacity (maximum rate),
 - communication scheme,
 - network adversary,
 - ► ...

X rate = the max. # of msg that can be transmitted to all sinks per channel use **X** we are not happy with this

- **②** Provide formal tools to derive new upper bounds for the capacity of a network.
- Over various communication scenarios.

イロト イヨト イヨト

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:

- Give mathematical definitions for:
 - network capacity (maximum rate),
 - communication scheme,
 - network adversary,
 - **۲** ...

X rate = the max. # of msg that can be transmitted to all sinks per channel use **X** we are not happy with this

- Provide formal tools to derive new upper bounds for the capacity of a network.
- Over various communication scenarios.

Remark

We do this in part by mathematizing and extending ideas of:

... Shannon, Cai, Li, Yeung, Yang, Zhang, Jaggi, Langberg, Katti, Ho, Katabi, Médard, Effros, Nutman, Wang, Silva, Kschischang, Kœtter, Siavoshani, Diggavi, Fragouli, Kœrner, Orlitsky, ...

Sac

イロト イヨト イヨト

Mathematical model for Adversarial Network Coding

Edge-specific adversaries:

multiple sources

receivers

DQC

メロト メロト メヨト メ

Mathematical model for Adversarial Network Coding

Edge-specific adversaries:

Our approach/program:

- Adversarial point-to-point channels (no networks).
- Operations with channels (product, concatenation, union).
- I Hamming-type adversarial channels over cartesian product alphabets.
- Adversarial networks: network codes, error-correcting codes, capacity regions.
- O Porting bounds for Hamming-type channels to networks (general method).
- Applications: new upper and lower bounds for some adversarial model.
- Wew communication schemes for some scenarios.

nan

イロト イロト イヨト イ

receivers

Adversarial channels

Noisy channels: theory of "probability" Adversarial channels: theory of "possibility" vs

Definition

An (adversarial) channel is a map $\Omega: \mathscr{X} \to 2^{\mathscr{Y}} \setminus \{\emptyset\}$, where \mathscr{X} and \mathscr{Y} are finite non-empty sets called input and output alphabet, respectively.

Notation: $\Omega: \mathscr{X} \dashrightarrow \mathscr{Y}$.

999

Adversarial channels

Noisy channels: theory of "probability" vs Adversarial channels: theory of "possibility"

Definition

An (adversarial) channel is a map $\Omega : \mathscr{X} \to 2^{\mathscr{Y}} \setminus \{\emptyset\}$, where \mathscr{X} and \mathscr{Y} are finite non-empty sets called input and output alphabet, respectively.

Notation: $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$.

Example

Let $\mathscr{X} = \mathscr{Y} := \{0, 1, 2, 3, 4\}$, and let $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$ be the channel defined by

 $\Omega(0):=\{0,1\},\quad \Omega(1):=\{1,2\},\quad \Omega(2):=\{2,3\},\quad \Omega(3):=\{3,4\},\quad \Omega(4):=\{4,0\}.$

The graph on the right is called the *confusability graph*.

An (adversarial) channel is a map $\Omega: \mathscr{X} \to 2^{\mathscr{Y}} \setminus \{\emptyset\}$, where \mathscr{X} and \mathscr{Y} are finite non-empty sets called input and output alphabet, respectively.

Notation: $\Omega: \mathscr{X} \dashrightarrow \mathscr{Y}$.

Example

Let $\mathscr{X} = \mathscr{Y} = \mathscr{A}^4$, where \mathscr{A} is a finite set.

Consider an adversary **A** able to corrupt at most one of the components indexed by $\{1,3,4\}$ of a 4-tuple

 $(x_1, x_2, x_3, x_4) \in \mathscr{A}^4$.

Sac

メロト メロト メヨト メヨト

An (adversarial) channel is a map $\Omega : \mathscr{X} \to 2^{\mathscr{Y}} \setminus \{\emptyset\}$, where \mathscr{X} and \mathscr{Y} are finite non-empty sets called input and output alphabet, respectively.

Notation: $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$.

Example

Let $\mathscr{X} = \mathscr{Y} = \mathscr{A}^4$, where \mathscr{A} is a finite set.

Consider an adversary ${\bm A}$ able to corrupt at most one of the components indexed by $\{1,3,4\}$ of a 4-tuple

 $(x_1,x_2,x_3,x_4) \in \mathscr{A}^4.$

The corresponding channel $\Omega: \mathscr{A}^4 \dashrightarrow \mathscr{A}^4$ is given by

 $\Omega(x) = \{ y \in \mathscr{A}^4 \mid y_2 = x_2 \text{ and } \mathsf{d}_\mathsf{H}(x, y) \leq 1 \} \qquad \text{for all} \ x \in \mathscr{A}^4,$

where d_H is the Hamming distance.

Alberto Ravagnani (UCD)

nan

イロト 不得 トイヨト イヨト 二日

Let $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$ be a channel. A (one-shot) code for Ω is a non-empty subset $\mathscr{C} \subseteq \mathscr{X}$. We say that \mathscr{C} is good for Ω when $\Omega(x) \cap \Omega(x') = \emptyset$ for all $x, x' \in \mathscr{C}$ with $x \neq x'$.

The (one-shot) capacity of $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$ is

 $C_1(\Omega) := \max\{\log_2 |\mathscr{C}| : \mathscr{C} \subseteq \mathscr{X} \text{ is good for } \Omega\}.$

メロト メロト メヨト メヨト

Let $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$ be a channel. A (one-shot) code for Ω is a non-empty subset $\mathscr{C} \subseteq \mathscr{X}$. We say that \mathscr{C} is good for Ω when $\Omega(x) \cap \Omega(x') = \emptyset$ for all $x, x' \in \mathscr{C}$ with $x \neq x'$.

The (one-shot) capacity of $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$ is

 $C_1(\Omega) := \max\{\log_2 |\mathscr{C}| : \mathscr{C} \subseteq \mathscr{X} \text{ is good for } \Omega\}.$

Example

Let $\mathscr{X} = \mathscr{Y} := \{0, 1, 2, 3, 4\}$, and let $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$ be the channel defined by $\Omega(0) := \{0, 1\}, \quad \Omega(1) := \{1, 2\}, \quad \Omega(2) := \{2, 3\}, \quad \Omega(3) := \{3, 4\}, \quad \Omega(4) := \{4, 0\}.$

Let $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$ be a channel. A (one-shot) code for Ω is a non-empty subset $\mathscr{C} \subseteq \mathscr{X}$. We say that \mathscr{C} is good for Ω when $\Omega(x) \cap \Omega(x') = \emptyset$ for all $x, x' \in \mathscr{C}$ with $x \neq x'$.

The (one-shot) capacity of $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$ is

 $C_1(\Omega) := \max\{\log_2 |\mathscr{C}| : \mathscr{C} \subseteq \mathscr{X} \text{ is good for } \Omega\}.$

Example

Let $\mathscr{X} = \mathscr{Y} := \{0, 1, 2, 3, 4\}$, and let $\Omega : \mathscr{X} \dashrightarrow \mathscr{Y}$ be the channel defined by $\Omega(0) := \{0, 1\}, \quad \Omega(1) := \{1, 2\}, \quad \Omega(2) := \{2, 3\}, \quad \Omega(3) := \{3, 4\}, \quad \Omega(4) := \{4, 0\}.$

We study various notions of capacity of an adversarial channel:

- (One-shot) capacity, modeling one use of the channel;
- Zero-error capacity, modeling multiple uses of channels;
- Compound zero-error capacity, modeling adversaries with certain restrictions.

∃ 990

Let $\Omega_1 : \mathscr{X}_1 \dashrightarrow \mathscr{Y}_1$ and $\Omega_2 : \mathscr{X}_2 \dashrightarrow \mathscr{Y}_2$ be channels, with $\mathscr{Y}_1 \subseteq \mathscr{X}_2$.

The concatenation of Ω_1 and Ω_2 is the channel $\Omega_1 \triangleright \Omega_2 : \mathscr{X}_1 \dashrightarrow \mathscr{Y}_2$ defined by

$$(\Omega_1 \blacktriangleright \Omega_2)(x) := \bigcup_{y \in \Omega_1(x)} \Omega_2(y)$$
 for all $x \in \mathscr{X}_1$.

Diagram: $\mathscr{X}_1 \xrightarrow{\Omega_1} \mathscr{Y}_1 \subseteq \mathscr{X}_2 \xrightarrow{\Omega_2} \mathscr{Y}_2.$

Let $\Omega_1 : \mathscr{X}_1 \dashrightarrow \mathscr{Y}_1$ and $\Omega_2 : \mathscr{X}_2 \dashrightarrow \mathscr{Y}_2$ be channels, with $\mathscr{Y}_1 \subseteq \mathscr{X}_2$.

The concatenation of Ω_1 and Ω_2 is the channel $\Omega_1 \blacktriangleright \Omega_2 : \mathscr{X}_1 \dashrightarrow \mathscr{Y}_2$ defined by

$$(\Omega_1 \blacktriangleright \Omega_2)(x) := \bigcup_{y \in \Omega_1(x)} \Omega_2(y)$$
 for all $x \in \mathscr{X}_1$.

 $\mathsf{Diagram} \colon \qquad \mathscr{X}_1 \xrightarrow{\Omega_1} \mathscr{Y}_1 \subseteq \mathscr{X}_2 \xrightarrow{\Omega_2} \mathscr{Y}_2.$

ACHTUNG! The confusability graph of $\Omega_1 \triangleright \Omega_2$ is not determined by the confusability graphs of the two channels Ω_1 and Ω_2 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

We study various channels operations:

- product, modeling combined channels uses;
- **power**, modeling multiple uses of a channel (zero-error capacity);
- concatenation, modeling channels used one after the other;
- union, modeling some restricted adversaries (compound zero-error capacity).

Channels can be combined with each other using these operations in an "algebraic fashion".

Alberto Ravagnani (UCD)

590

- A (combinational) network is a 4-tuple $\mathcal{N} = (\mathcal{V}, \mathcal{E}, \mathbf{S}, \mathbf{T})$ where:
 - **(** \mathscr{V},\mathscr{E}) is a finite directed acyclic multigraph,
 - **2** $\mathbf{S} \subset \mathscr{V}$ is the set of **sources**,
 - **3** $\mathbf{T} \subset \mathscr{V}$ is the set of **terminals** or **sinks**.

DQC

< ロ ト < 回 ト < 三 ト < 三 ト</p>

- A (combinational) network is a 4-tuple $\mathcal{N} = (\mathcal{V}, \mathcal{E}, \mathbf{S}, \mathbf{T})$ where:
 - **(** \mathscr{V},\mathscr{E}) is a finite directed acyclic multigraph,
 - **a** $\mathbf{S} \subset \mathscr{V}$ is the set of **sources**.
 - **3** $\mathbf{T} \subseteq \mathscr{V}$ is the set of **terminals** or **sinks**.

(We allow multiple parallel directed edges). We also assume that the following hold.

- **(4)** |S| > 1, |T| > 1, $S \cap T = \emptyset$.
- So For any $S \in S$ and $T \in T$ there exists a directed path from S to T.
- Sources do not have incoming edges, and terminals do not have outgoing edges.
- **O** For every vertex $V \in \mathcal{V} \setminus (S \cup T)$ there exists a directed path from S to V for some $S \in S$, and a directed path from V to T for some $T \in \mathbf{T}$.

Sac

< ロ ト < 回 ト < 三 ト < 三 ト</p>

- A (combinational) network is a 4-tuple $\mathcal{N} = (\mathcal{V}, \mathcal{E}, \mathbf{S}, \mathbf{T})$ where:
 - **(** \mathscr{V},\mathscr{E}) is a finite directed acyclic multigraph,
 - **2** $S \subseteq \mathscr{V}$ is the set of sources,
 - **3** $T \subseteq \mathscr{V}$ is the set of **terminals** or **sinks**.

(We allow multiple parallel directed edges). We also assume that the following hold.

- $\textcircled{\textbf{o}} \ |\textbf{S}| \geq 1, \ |\textbf{T}| \geq 1, \ \textbf{S} \cap \textbf{T} = \emptyset.$
- **③** For any $S \in \mathbf{S}$ and $T \in \mathbf{T}$ there exists a directed path from S to T.
- **(**Sources do not have incoming edges, and terminals do not have outgoing edges.
- **●** For every vertex $V \in \mathscr{V} \setminus (\mathbf{S} \cup \mathbf{T})$ there exists a directed path from S to V for some $S \in \mathbf{S}$, and a directed path from V to T for some $T \in \mathbf{T}$.

The elements of \mathscr{V} are called **vertices**. The elements of $\mathscr{V} \setminus (\mathbf{S} \cup \mathbf{T})$ are the **intermediate** vertices. We denote the set of incoming and outgoing edges of a $V \in \mathscr{V}$ by in(V) and out(V), respectively.

イロト イヨト イヨト

Nodes operations and network codes

The edges of a network \mathcal{N} can carry precisely one symbol from a finite set \mathscr{A} , the **alphabet**.

Definition

A network code \mathscr{F} for \mathscr{N} is a family of functions $\{\mathscr{F}_V : V \in \mathscr{V} \setminus (\mathbf{S} \cup \mathbf{T})\}$, where

 $\mathscr{F}_V : \mathscr{A}^{|\mathrm{in}(V)|} \to \mathscr{A}^{|\mathrm{out}(V)|} \quad \text{ for all } V \in \mathscr{V} \setminus (\mathbf{S} \cup \mathbf{T}).$

Nodes operations and network codes

The edges of a network ${\mathscr N}$ can carry precisely one symbol from a finite set ${\mathscr A}$, the **alphabet**.

Definition

A network code \mathscr{F} for \mathscr{N} is a family of functions $\{\mathscr{F}_V : V \in \mathscr{V} \setminus (\mathbf{S} \cup \mathbf{T})\}$, where

$$\mathscr{F}_{V}: \mathscr{A}^{|\mathsf{in}(V)|} \to \mathscr{A}^{|\mathsf{out}(V)|} \quad \text{ for all } V \in \mathscr{V} \setminus (\mathsf{S} \cup \mathsf{T}).$$

ACHTUNG! This definition is not good (yet).

Let
$$a \in \mathscr{A}$$
 and $\mathscr{F}_V(a) = (b, c) \in \mathscr{A}^2$

メロト メロト メヨト メヨト

Nodes operations and network codes

The edges of a network \mathcal{N} can carry precisely one symbol from a finite set \mathscr{A} , the **alphabet**.

Definition

A network code \mathscr{F} for \mathscr{N} is a family of functions $\{\mathscr{F}_V : V \in \mathscr{V} \setminus (\mathbf{S} \cup \mathbf{T})\}$, where

$$\mathscr{F}_{V}: \mathscr{A}^{|\mathsf{in}(V)|} \to \mathscr{A}^{|\mathsf{out}(V)|} \quad \text{ for all } V \in \mathscr{V} \setminus (\mathsf{S} \cup \mathsf{T}).$$

ACHTUNG! This definition is not good (yet).

Let
$$a \in \mathscr{A}$$
 and $\mathscr{F}_V(a) = (b, c) \in \mathscr{A}^2$

イロト イロト イヨト イヨト 一日

The edges of \mathscr{N} can be partially ordered: $e_i \leq e_j$ is there exists a path in \mathscr{N} of the form $e_i \rightarrow e_i \rightarrow e_j \rightarrow e_j$

Nodes operations and network codes

The edges of a network $\mathcal N$ can carry precisely one symbol from a finite set $\mathscr A$, the **alphabet**.

Definition

A network code \mathscr{F} for \mathscr{N} is a family of functions $\{\mathscr{F}_V : V \in \mathscr{V} \setminus (\mathbf{S} \cup \mathbf{T})\}$, where

$$\mathscr{F}_{V}: \mathscr{A}^{|\mathsf{in}(V)|} \to \mathscr{A}^{|\mathsf{out}(V)|} \quad \text{ for all } V \in \mathscr{V} \setminus (\mathsf{S} \cup \mathsf{T}).$$

ACHTUNG! This definition is not good (yet).

Let
$$a \in \mathscr{A}$$
 and $\mathscr{F}_V(a) = (b, c) \in \mathscr{A}^2$

The edges of \mathscr{N} can be partially ordered: $e_i \leq e_j$ is there exists a path in \mathscr{N} of the form $e_i \rightarrow e_i \rightarrow e_j \rightarrow e_j \rightarrow e_j \rightarrow e_j$

Theorem

The order \leq can be extended to a total order.

We fix such a total oder and denote it by \leq . This resolves the ambiguity.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つへで

Alberto Ravagnani (UCD)

999

イロト イヨト イヨト イヨト

Network channels

Let $(\mathcal{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $\mathbf{S} = \{S_1, ..., S_N\}$ is the set of network sources.
- $J \subseteq \{1, ..., N\}$ is a set of source indices, $\mathbf{S}_J = \{S_i \mid i \in J\}$.
- $\bullet \ \mathscr{F}$ is a network code.
- The sources $\{S_i \mid i \notin J\}$ transmit fixed messages $\overline{x} \in \prod_{i \notin J} \mathscr{A}^{|\operatorname{out}(S_i)|}$.
- $\mathscr{E}' \subseteq \mathscr{E}$ is a non-empty set of edges.

Network channels

Let $(\mathcal{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $S = \{S_1, ..., S_N\}$ is the set of network sources.
- $J \subseteq \{1, ..., N\}$ is a set of source indices, $\mathbf{S}_J = \{S_i \mid i \in J\}$.
- $\bullet \ \mathscr{F}$ is a network code.
- The sources $\{S_i \mid i \notin J\}$ transmit fixed messages $\overline{x} \in \prod_{i \notin J} \mathscr{A}^{|\operatorname{out}(S_i)|}$.
- $\mathscr{E}' \subseteq \mathscr{E}$ is a non-empty set of edges.

The channel

$$\Omega^{J}_{\mathscr{F}}[\mathsf{A};\mathsf{S}_{J}\to\mathscr{E}'\mid\overline{x}] : \prod_{i\in J}\mathscr{A}^{|\mathsf{out}(S_{i})|} \dashrightarrow \mathscr{A}^{|\mathscr{E}'|}$$

describes the transfer

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Network channels

Let $(\mathcal{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $S = \{S_1, ..., S_N\}$ is the set of network sources.
- $J \subseteq \{1, ..., N\}$ is a set of source indices, $\mathbf{S}_J = \{S_i \mid i \in J\}$.
- $\bullet \ \mathscr{F}$ is a network code.
- The sources $\{S_i \mid i \notin J\}$ transmit fixed messages $\overline{x} \in \prod_{i \notin J} \mathscr{A}^{|\operatorname{out}(S_i)|}$.
- $\mathscr{E}' \subseteq \mathscr{E}$ is a non-empty set of edges.

The channel

$$\Omega^{J}_{\mathscr{F}}[\mathsf{A};\mathsf{S}_{J}\to\mathscr{E}'\,|\,\overline{x}] : \prod_{i\in J}\mathscr{A}^{|\mathsf{out}(S_{i})|} \dashrightarrow \mathscr{A}^{|\mathscr{E}'|}$$

describes the transfer

Special case: $\mathscr{E}' = in(T)$, where $T \in \mathbf{T}$ is a terminal.

Alberto Ravagnani (UCD)

<ロト < 回 > < 三 > < 三 > < 三 > のへの

Consider the following network \mathcal{N} with alphabet \mathscr{A} .

An adversary **A** is able to corrupt at most one of the values of the dotted edges of \mathscr{N} .

DQC

メロト メロト メヨト メヨト

Consider the following network \mathcal{N} with alphabet \mathscr{A} .

An adversary **A** is able to corrupt at most one of the values of the dotted edges of \mathscr{N} .

A network code \mathscr{F} for \mathscr{N} is the assignment of a function $\mathscr{F}_V : \mathscr{A}^3 \to \mathscr{A}^4$.

DQC

イロト 不良 トイヨト イヨト

Consider the following network \mathcal{N} with alphabet \mathscr{A} .

An adversary **A** is able to corrupt at most one of the values of the dotted edges of \mathscr{N} .

A network code \mathscr{F} for \mathscr{N} is the assignment of a function $\mathscr{F}_V : \mathscr{A}^3 \to \mathscr{A}^4$.

Let $J := \{1\}$, and assume that S_2 emits a fixed element $\overline{x} \in \mathscr{A}$. Let us describe

$$\Omega^J_{\mathscr{F}}[\mathbf{A};\mathbf{S}_J\to \operatorname{in}(T)\mid \overline{x}].$$

590

イロト イロト イヨト イヨト

Consider the following network \mathcal{N} with alphabet \mathscr{A} .

An adversary **A** is able to corrupt at most one of the values of the dotted edges of \mathscr{N} .

A network code \mathscr{F} for \mathscr{N} is the assignment of a function $\mathscr{F}_V : \mathscr{A}^3 \to \mathscr{A}^4$.

Let $J := \{1\}$, and assume that S_2 emits a fixed element $\overline{x} \in \mathscr{A}$. Let us describe

$$\Omega^{J}_{\mathscr{F}}[\mathbf{A};\mathbf{S}_{J}\to \operatorname{in}(T)\,|\,\overline{x}].$$

Remark: we have to say what $\Omega^J_{\mathscr{F}}[\mathbf{A}; \mathbf{S} \to in(\mathcal{T})](x_1, x_2) \subseteq \mathscr{A}^4$ is for $(x_1, x_2) \in \mathscr{A}^2$.

590

メロト メロト メヨト メヨト

Consider the following network \mathcal{N} with alphabet \mathscr{A} .

An adversary **A** is able to corrupt at most one of the values of the dotted edges of \mathscr{N} .

A network code \mathscr{F} for \mathscr{N} is the assignment of a function $\mathscr{F}_V : \mathscr{A}^3 \to \mathscr{A}^4$.

Let $J := \{1\}$, and assume that S_2 emits a fixed element $\overline{x} \in \mathscr{A}$. Let us describe

$$\Omega^{J}_{\mathscr{F}}[\mathbf{A};\mathbf{S}_{J}\to \operatorname{in}(T)\mid \overline{x}].$$

Remark: we have to say what $\Omega^J_{\mathscr{F}}[\mathbf{A}; \mathbf{S} \to \operatorname{in}(\mathcal{T})](x_1, x_2) \subseteq \mathscr{A}^4$ is for $(x_1, x_2) \in \mathscr{A}^2$.

If $(x_1, x_2) \in \mathscr{A}^2$, and $\overline{z} := \mathscr{F}_V(x_1, x_2, \overline{x}) \in \mathscr{A}^4$, then

$$\Omega^J_{\mathscr{F}}[\mathsf{A};\mathsf{S}\to \mathsf{in}(\mathcal{T})](x_1,x_2)=\{y\in\mathscr{A}^4\mid y_2=\overline{z}_2 \ \text{and} \ \mathsf{d}_{\mathsf{H}}(y,\overline{z})\leq 1\}.$$

590

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Capacity region

Definition

- \mathcal{N} a network with N sources $\mathbf{S} = \{S_1, ..., S_N\}$.
- T is the set of terminals.
- A is an adversary.

Capacity region

Definition

- \mathcal{N} a network with N sources $\mathbf{S} = \{S_1, ..., S_N\}$.
- T is the set of terminals.
- A is an adversary.

The (one shot) capacity region of $(\mathcal{N}, \mathbf{A})$ is the set

$$\mathscr{R}(\mathscr{N}, \mathbf{A}) \subseteq \mathbb{R}_{\geq 0}^{N}$$

of all the *N*-tuples $(\alpha_1, ..., \alpha_N)$ for which there exist:

- \bullet a network code ${\mathscr F}$ for ${\mathscr N}$
- non-empty sets $\mathscr{C}_i \subseteq \mathscr{A}^{|\operatorname{out}(S_i)|}$, for $1 \leq i \leq N$

with the following properties:

- $\mathfrak{G} \ \mathscr{C} = \mathscr{C}_1 \times \cdots \times \mathscr{C}_N \text{ is a good code for each channel } \Omega_{\mathscr{F}}[\mathsf{A}; \mathsf{S} \to \text{in}(\mathcal{T})], \ \mathcal{T} \in \mathsf{T}.$

We say that such a pair $(\mathscr{F}, \mathscr{C})$ achieves the rate $(\alpha_1, ..., \alpha_N)$ in one shot.

Capacity region

Definition

- \mathcal{N} a network with N sources $\mathbf{S} = \{S_1, ..., S_N\}$.
- T is the set of terminals.
- A is an adversary.

The (one shot) capacity region of (\mathcal{N}, A) is the set

$$\mathscr{R}(\mathscr{N},\mathsf{A}) \subseteq \mathbb{R}_{\geq 0}^{\mathsf{N}}$$

of all the *N*-tuples $(\alpha_1, ..., \alpha_N)$ for which there exist:

- \bullet a network code ${\mathscr F}$ for ${\mathscr N}$
- non-empty sets $\mathscr{C}_i \subseteq \mathscr{A}^{|\operatorname{out}(S_i)|}$, for $1 \leq i \leq N$

with the following properties:

- $\mathfrak{G} \ \mathscr{C} = \mathscr{C}_1 \times \cdots \times \mathscr{C}_N \text{ is a good code for each channel } \Omega_{\mathscr{F}}[\mathsf{A}; \mathsf{S} \to \mathsf{in}(\mathcal{T})], \ \mathcal{T} \in \mathsf{T}.$

We say that such a pair $(\mathscr{F}, \mathscr{C})$ achieves the rate $(\alpha_1, ..., \alpha_N)$ in one shot.

These conditions guarantee that the sources can transmit in one shot to each of the sinks $\alpha_1 + \cdots + \alpha_N$ alphabet symbols, α_i of which are emitted by S_i , for $1 \le i \le N$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

We study various notions of capacity region:

- (one shot) capacity region, modeling one network use;
- zero-error capacity region, modeling multiple uses of the network;
- compound zero-error capacity region, modeling certain restrictions on the adversaries.

Let $(\mathcal{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $S = \{S_1, ..., S_N\}$ the sources, $J \subseteq \{1, ..., N\}$ and $S_J = \{S_i \mid i \in J\}$.
- $\bullet \ \mathscr{F}$ is a network code.
- The sources $\{S_i \mid i \notin J\}$ transmit fixed messages $\overline{x} \in \prod_{i \notin J} \mathscr{A}^{|out(S_i)|}$.
- $\mathscr{E}' \subseteq \mathscr{E}$ is an edge-cut that separates S_J from $T \in T$.

Let $(\mathcal{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $S = \{S_1, ..., S_N\}$ the sources, $J \subseteq \{1, ..., N\}$ and $S_J = \{S_i \mid i \in J\}$.
- $\bullet \ \mathscr{F}$ is a network code.
- The sources $\{S_i \mid i \notin J\}$ transmit fixed messages $\overline{x} \in \prod_{i \notin J} \mathscr{A}^{|out(S_i)|}$.
- $\mathscr{E}' \subseteq \mathscr{E}$ is an edge-cut that separates S_J from $T \in T$.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $(\mathcal{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $S = \{S_1, ..., S_N\}$ the sources, $J \subseteq \{1, ..., N\}$ and $S_J = \{S_i \mid i \in J\}$.
- $\bullet \ \mathscr{F}$ is a network code.
- The sources $\{S_i \mid i \notin J\}$ transmit fixed messages $\overline{x} \in \prod_{i \notin J} \mathscr{A}^{|out(S_i)|}$.
- $\mathscr{E}' \subseteq \mathscr{E}$ is an edge-cut that separates S_J from $T \in T$.

nan

イロト 不得 トイヨト イヨト 二日

Let $(\mathcal{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $S = \{S_1, ..., S_N\}$ the sources, $J \subseteq \{1, ..., N\}$ and $S_J = \{S_i \mid i \in J\}$.
- $\bullet \ {\mathscr F}$ is a network code.
- The sources $\{S_i \mid i \notin J\}$ transmit fixed messages $\overline{x} \in \prod_{i \notin J} \mathscr{A}^{|out(S_i)|}$.
- $\mathscr{E}' \subseteq \mathscr{E}$ is an edge-cut that separates S_J from $T \in T$.

$$\mathsf{C}_1\left(\Omega^J_{\mathscr{F}}[\mathbf{A};\mathbf{S}_J\to\mathcal{T}\mid\overline{x}]\right) \;\leq\; \mathsf{C}_1\left(\Omega^J_{\mathscr{F}}[\mathbf{S}_J\to\mathscr{E}'\mid\overline{x}] \blacktriangleright\; \Omega[\mathbf{A};\mathscr{E}'\to\mathscr{E}'] \blacktriangleright\; \Omega^J_{\mathscr{F}}[\mathscr{E}'\to\mathcal{T}\mid\overline{x}]\right)$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $(\mathcal{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $S = \{S_1, ..., S_N\}$ the sources, $J \subseteq \{1, ..., N\}$ and $S_J = \{S_i \mid i \in J\}$.
- \mathscr{F} is a network code
- The sources $\{S_i \mid i \notin J\}$ transmit fixed messages $\overline{x} \in \prod_{i \notin J} \mathscr{A}^{|\operatorname{out}(S_i)|}$.
- $\mathcal{E}' \subseteq \mathcal{E}$ is an edge-cut that separates **S**₁ from $T \in \mathbf{T}$.

$$\mathsf{C}_1\left(\Omega^J_{\mathscr{F}}[\mathsf{A};\mathsf{S}_J\to\mathcal{T}\mid\overline{x}]\right) \;\leq\; \mathsf{C}_1\left(\Omega^J_{\mathscr{F}}[\mathsf{S}_J\to\mathscr{E}'\mid\overline{x}] \blacktriangleright\; \Omega[\mathsf{A};\mathscr{E}'\to\mathscr{E}'] \blacktriangleright\; \Omega^J_{\mathscr{F}}[\mathscr{E}'\to\mathcal{T}\mid\overline{x}]\right)$$

Proposition (R., Kschischang)

 $C_1(\Omega_1 \triangleright \Omega_2 \triangleright \Omega_3) \leq \min_{i=1}^3 C_1(\Omega_i).$

Sac

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Let $(\mathcal{N}, \mathbf{A})$ be a network with an adversary. Let \mathscr{A} be the network alphabet.

- $S = \{S_1, ..., S_N\}$ the sources, $J \subseteq \{1, ..., N\}$ and $S_J = \{S_i \mid i \in J\}$.
- $\bullet \ \mathscr{F}$ is a network code.
- The sources $\{S_i \mid i \notin J\}$ transmit fixed messages $\overline{x} \in \prod_{i \notin J} \mathscr{A}^{|out(S_i)|}$.
- $\mathscr{E}' \subseteq \mathscr{E}$ is an edge-cut that separates S_J from $T \in T$.

$$\mathsf{C}_1\left(\Omega^J_{\mathscr{F}}[\mathbf{A};\mathbf{S}_J\to\mathcal{T}\mid\overline{\mathbf{x}}]\right) \;\leq\; \mathsf{C}_1\left(\Omega^J_{\mathscr{F}}[\mathbf{S}_J\to\mathscr{E}'\mid\overline{\mathbf{x}}] \mathrel{\blacktriangleright} \; \Omega[\mathbf{A};\mathscr{E}'\to\mathscr{E}'] \mathrel{\blacktriangleright} \; \Omega^J_{\mathscr{F}}[\mathscr{E}'\to\mathcal{T}\mid\overline{\mathbf{x}}]\right)$$

Proposition (R., Kschischang)

 $\mathsf{C}_1(\Omega_1 \blacktriangleright \Omega_2 \blacktriangleright \Omega_3) \leq \min_{i=1}^3 \mathsf{C}_1(\Omega_i). \quad \text{Therefore } \mathsf{C}_1\left(\Omega_{\mathscr{F}}^J[\mathbf{A};\mathbf{S}_J \to \mathcal{T} \mid \overline{x}]\right) \\ \leq \mathsf{C}_1\left(\Omega[\mathbf{A};\mathscr{E}' \to \mathscr{E}']\right).$

< □ > < □ > < 三 > < 三 > < 三 > ○ < ○

999

イロト イロト イヨト イヨト

- This can be made rigorous.
- Using channel operations, this decomposition idea can be extended to:
 - zero-error capacity,
 - compound zero-error capacity.
- This allows to port bounds for channels $\Omega: \mathscr{A}^n \to \mathscr{A}^n$ to networks in a systematic way.
- This applies to single source and multiple sources networks.
- We study also erasure adversaries (alphabet extensions).

Alberto Ravagnani (UCD)

・ロト・白 ・ キョ・ キョ・ ・ ヨー うくの

Theorem (R., Kschischang)

Let \mathcal{N} be a network with N sources $\mathbf{S} = \{S_1, ..., S_N\}$ and set of terminals \mathbf{T} . Set $I := \{1, ..., N\}$.

Denote by **A** an aversary:

- having access to all the network edges \mathscr{E} ,
- able to corrupt at most t of them, and erase up to e of them.

590

イロト イヨト イヨト イヨト

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S} = \{S_1, ..., S_N\}$ and set of terminals \mathbf{T} . Set $I := \{1, ..., N\}$.

Denote by A an aversary:

- having access to all the network edges \mathscr{E} ,
- able to corrupt at most t of them, and erase up to e of them.

For all $(\alpha_1, ..., \alpha_N) \in \mathscr{R}(\mathscr{N}, \mathbf{A})$ and for all non-empty $J \subseteq I$ we have

$$\sum_{i \in J} \alpha_i \leq \min_{T \in \mathsf{T}} \max\{0, \min\operatorname{-cut}(\mathsf{S}_J, T) - 2t - e\}$$

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S} = \{S_1, ..., S_N\}$ and set of terminals \mathbf{T} . Set $I := \{1, ..., N\}$.

Denote by **A** an aversary:

- having access to all the network edges \mathscr{E} ,
- able to corrupt at most t of them, and erase up to e of them.

For all $(\alpha_1, ..., \alpha_N) \in \mathscr{R}(\mathscr{N}, \mathbf{A})$ and for all non-empty $J \subseteq I$ we have

$$\sum_{i \in J} \alpha_i \leq \min_{T \in \mathsf{T}} \max\left\{0, \mathsf{min-cut}(\mathsf{S}_J, T) - 2t - e\right\}$$

and

$$\sum_{i \in J} \alpha_i \leq \min_{T \in \mathsf{T}} \max\left\{0, \mathsf{min-cut}(\mathsf{S}_J, T) - \log_{|\mathscr{A}|} \left(\sum_{h=0}^{t'} \binom{\mathsf{min-cut}(\mathsf{S}_J, T)}{h} (|\mathscr{A}| - 1)^h\right)\right\}, \ t' := \lfloor t + e/2 \rfloor.$$

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S} = \{S_1, ..., S_N\}$ and set of terminals \mathbf{T} . Set $I := \{1, ..., N\}$.

Denote by **A** an aversary:

- having access to all the network edges \mathscr{E} ,
- able to corrupt at most t of them, and erase up to e of them.

For all $(\alpha_1, ..., \alpha_N) \in \mathscr{R}(\mathscr{N}, \mathbf{A})$ and for all non-empty $J \subseteq I$ we have

$$\sum_{i \in J} \alpha_i \leq \min_{T \in \mathsf{T}} \max\{0, \mathsf{min-cut}(\mathsf{S}_J, T) - 2t - e\}$$

and

$$\sum_{i \in J} \alpha_i \leq \min_{T \in \mathbf{T}} \max\left\{0, \min\operatorname{cut}(\mathbf{S}_J, T) - \log_{|\mathscr{A}|} \left(\sum_{h=0}^{t'} \binom{\min\operatorname{cut}(\mathbf{S}_J, T)}{h} (|\mathscr{A}| - 1)^h\right)\right\}, \ t' := \lfloor t + e/2 \rfloor.$$

These are obtained by "porting" the Singleton and the Hamming bounds, respectively.

Remark: any other bound from classical Coding Theory can be ported.

Alberto Ravagnani (UCD)

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つへで

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $\mathbf{S} = \{S_1, ..., S_N\}$ and set of terminals \mathbf{T} . Set $I := \{1, ..., N\}$.

Denote by **A** a set of *L* aversaries $A_1, ..., A_L$ such that:

- adversary ℓ has access to $\mathscr{E}_{\ell} \subseteq \mathscr{E}$ for all $1 \leq \ell \leq L$,
- the 𝔅ℓ's are pairwise disjoint,
- adversary ℓ is able to corrupt at most t_ℓ edges, and erase at most e_ℓ edges.

<ロト < 回 > < 回 > < 回 > < 回 >

Theorem (R., Kschischang)

Let \mathscr{N} be a network with N sources $S = \{S_1, ..., S_N\}$ and set of terminals T. Set $I := \{1, ..., N\}$.

Denote by **A** a set of *L* aversaries $A_1, ..., A_L$ such that:

- adversary ℓ has access to $\mathscr{E}_{\ell} \subseteq \mathscr{E}$ for all $1 \leq \ell \leq L$,
- the *E*_l's are pairwise disjoint,
- adversary ℓ is able to corrupt at most t_{ℓ} edges, and erase at most e_{ℓ} edges.

For all $(\alpha_1, ..., \alpha_N) \in \mathscr{R}(\mathscr{N}, \mathbf{A})$ and for all non-empty $J \subseteq I$ we have

$$\sum_{i \in J} \alpha_i \leq \min_{T \in \mathbf{T}} \min \left\{ |\mathscr{E}'| - \sum_{\ell=1}^L \min \left\{ 2t_\ell + e_\ell, |\mathscr{E}' \cap \mathscr{E}_\ell| \right\} : \mathscr{E}' \subseteq \mathscr{E} \text{ is a cut between } \mathbf{S}_J \text{ and } T \right\}.$$

- Similar bounds can be proved for:
 - zero-error capacity region,
 - compound zero-error capacity region.
- These bounds apply to single source and multiple sources networks.
- These bounds show that when the adversary is restricted, capacity cannot be achieved in general with linear network coding.
- We give capacity-achieving schemes for some adversarial scenarios.

= nar

イロト イロト イヨト イヨト

Recall:

Theorem (R., Kschischang)

Let \mathcal{N} be a network with N sources $\mathbf{S} = \{S_1, ..., S_N\}$ and set of terminals \mathbf{T} . Set $I := \{1, ..., N\}$. Denote by \mathbf{A} an aversary:

- $\bullet\,$ having access to all the network edges \mathscr{E} ,
- able to corrupt at most t of them.

For all $(\alpha_1,...,\alpha_N) \in \mathscr{R}(\mathscr{N},\mathbf{A})$ and all $\emptyset \neq J \subseteq I$ we have $\sum_{i \in J} \alpha_i \leq \min_{T \in \mathbf{T}} \max\{0,\min\text{-}\operatorname{cut}(\mathbf{S}_J,T)-2t\}.$

996

イロト イロト イヨト イヨト 一日

Recall:

Theorem (R., Kschischang)

Let \mathcal{N} be a network with N sources $\mathbf{S} = \{S_1, ..., S_N\}$ and set of terminals \mathbf{T} . Set $I := \{1, ..., N\}$. Denote by \mathbf{A} an aversary:

- $\bullet\,$ having access to all the network edges \mathscr{E} ,
- able to corrupt at most t of them.

For all
$$(\alpha_1,...,\alpha_N) \in \mathscr{R}(\mathscr{N},\mathbf{A})$$
 and all $\emptyset \neq J \subseteq I$ we have $\sum_{i \in J} \alpha_i \leq \min_{\mathcal{T} \in \mathbf{T}} \max\{0,\min\operatorname{cut}(\mathbf{S}_J,\mathcal{T}) - 2t\}.$

Theorem (R., Kschischang)

Under the same hypotheses, we have

$$\mathscr{R}(\mathscr{N},\mathsf{A}) \supseteq \left\{ (a_1,...,a_N) \in \mathbb{N}^N : \sum_{i \in J} a_i \leq \min_{\mathcal{T} \in \mathsf{T}} \max\left\{ 0, \min\operatorname{\mathsf{cut}}(\mathsf{S}_J,\mathcal{T}) - 2t \right\} \text{ for all } \emptyset \neq J \subseteq I \right\},$$

provided that $\mathscr{A} = \mathbb{F}_q^m$, and q and m are sufficiently large.

590

イロト イロト イヨト イヨト 二日

For N = 2 sources and 1 terminal, to achieve a rate (a_1, a_2) the previous scheme requires as network alphabet

$$\mathbb{F}_q^m$$
 where $m = (a_1 - 2t) \cdot (a_2 - 2t).$

DQC

For N = 2 sources and 1 terminal, to achieve a rate (a_1, a_2) the previous scheme requires as network alphabet

> \mathbb{F}_{a}^{m} $m = (a_1 - 2t) \cdot (a_2 - 2t).$ where

Theorem (R., Kschischang)

 \mathbb{F}_q^m

There exists a scheme (with efficient coding and decoding) for the same problem parameters that requires as network alphabet

```
where
   m = a_1 + a_2 - 2t.
```

DQC

<ロト <回ト < 三ト < 三ト

For N = 2 sources and 1 terminal, to achieve a rate (a_1, a_2) the previous scheme requires as network alphabet

 \mathbb{F}_{q}^{m} where $m = (a_1 - 2t) \cdot (a_2 - 2t).$

Theorem (R., Kschischang)

 \mathbb{F}_q^m

There exists a scheme (with efficient coding and decoding) for the same problem parameters that requires as network alphabet

where $m = a_1 + a_2 - 2t$.

Thank you very much!

<ロト < 回 ト < 三 ト < 三 ト - 三</p>