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What is network coding about?

Network coding: data transmission over networks.

S

T1

T2

TM

receivers

One source S attempts to sends messages m1, ...,mk ∈ Fn
q .

The sinks demand all the messages (multicast).

What about the intermediate nodes?

Goal

Maximize the number of messages that are transmitted to all sinks (rate).

Key idea: allow the nodes to perform operations on the received inputs.
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The “Butterfly” network
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This strategy is optimal: there is no better strategy!
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A mathematical framework for Adversarial Network Coding

Scenario

multiple sources (not just one) + one or multiple adversaries.

What we expect from the math model:

1 Give mathematical definitions for:

I network capacity (maximum rate),
I communication scheme,
I network adversary,
I ...

rate = the max. # of msg that can be transmitted to all sinks per channel use
we are not happy with this

2 Provide formal tools to derive new upper bounds for the capacity of a network.

3 Cover various communication scenarios.

Remark

We do this in part by mathematizing and extending ideas of:

... Shannon, Cai, Li, Yeung, Yang, Zhang, Jaggi, Langberg, Katti, Ho, Katabi, Médard, Effros,
Nutman, Wang, Silva, Kschischang, Kœtter, Siavoshani, Diggavi, Fragouli, Kœrner, Orlitsky, ...
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Mathematical model for Adversarial Network Coding

Edge-specific adversaries:

S1

S2

SN

T1

T2

TM

......

multiple sources receivers

Our approach/program:

1 Adversarial point-to-point channels (no networks).

2 Operations with channels (product, concatenation, union).

3 Hamming-type adversarial channels over cartesian product alphabets.

4 Adversarial networks: network codes, error-correcting codes, capacity regions.

5 Porting bounds for Hamming-type channels to networks (general method).

6 Applications: new upper and lower bounds for some adversarial model.

7 New communication schemes for some scenarios.
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Adversarial channels

Noisy channels: theory of “probability” vs Adversarial channels: theory of “possibility”

Definition

An (adversarial) channel is a map Ω : X → 2Y \{ /0}, where X and Y are finite non-empty sets
called input and output alphabet, respectively.

Notation: Ω : X 99KY .

Example

Let X = Y := {0,1,2,3,4}, and let Ω : X 99K Y be the channel defined by

Ω(0) := {0,1}, Ω(1) := {1,2}, Ω(2) := {2,3}, Ω(3) := {3,4}, Ω(4) := {4,0}.

0 0

1 1

2 2

3 3

4 4

0

1

2 3

4

The graph on the right is called the confusability graph.
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Adversarial channels

Definition

An (adversarial) channel is a map Ω : X → 2Y \{ /0}, where X and Y are finite non-empty sets
called input and output alphabet, respectively.

Notation: Ω : X 99KY .

Example

Let X = Y = A 4, where A is a finite set.

Consider an adversary A able to corrupt at most one of the components indexed by {1,3,4} of a
4-tuple

(x1,x2,x3,x4) ∈A 4.

The corresponding channel Ω : A 4 99K A 4 is given by

Ω(x) = {y ∈A 4 | y2 = x2 and dH(x ,y)≤ 1} for all x ∈A 4,

where dH is the Hamming distance.
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(One-shot) capacity

Definition

Let Ω : X 99K Y be a channel. A (one-shot) code for Ω is a non-empty subset C ⊆X . We say
that C is good for Ω when Ω(x)∩Ω(x ′) = /0 for all x ,x ′ ∈ C with x 6= x ′.

The (one-shot) capacity of Ω : X 99K Y is

C1(Ω) := max{log2 |C | : C ⊆X is good for Ω}.

Example

Let X = Y := {0,1,2,3,4}, and let Ω : X 99K Y be the channel defined by

Ω(0) := {0,1}, Ω(1) := {1,2}, Ω(2) := {2,3}, Ω(3) := {3,4}, Ω(4) := {4,0}.

0 0

1 1

2 2

3 3

4 4

0

1

2 3

4

We have C1(Ω) = log2(2) = 1.
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Capacities

We study various notions of capacity of an adversarial channel:

(One-shot) capacity, modeling one use of the channel;

Zero-error capacity, modeling multiple uses of channels;

Compound zero-error capacity, modeling adversaries with certain restrictions.
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Concatenation of channels

Definition

Let Ω1 : X1 99K Y1 and Ω2 : X2 99K Y2 be channels, with Y1 ⊆X2.

The concatenation of Ω1 and Ω2 is the channel Ω1 �Ω2 : X1 99K Y2 defined by

(Ω1 �Ω2)(x) :=
⋃

y∈Ω1(x)

Ω2(y) for all x ∈X1.

Diagram: X1
Ω1
99K Y1 ⊆X2

Ω2
99K Y2.

ACHTUNG! The confusability graph of Ω1 �Ω2 is not determined by the confusability
graphs of the two channels Ω1 and Ω2.
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Operations

We study various channels operations:

product, modeling combined channels uses;

power, modeling multiple uses of a channel (zero-error capacity);

concatenation, modeling channels used one after the other;

union, modeling some restricted adversaries (compound zero-error capacity).

Channels can be combined with each other using these operations in an “algebraic fashion”.
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What is a communication network?

Definition

A (combinational) network is a 4-tuple N = (V ,E ,S,T) where:

1 (V ,E ) is a finite directed acyclic multigraph,

2 S⊆ V is the set of sources,

3 T⊆ V is the set of terminals or sinks.

(We allow multiple parallel directed edges). We also assume that the following hold.

4 |S| ≥ 1, |T| ≥ 1, S∩T = /0.

5 For any S ∈ S and T ∈ T there exists a directed path from S to T .

6 Sources do not have incoming edges, and terminals do not have outgoing edges.

7 For every vertex V ∈ V \ (S∪T) there exists a directed path from S to V for some S ∈ S,
and a directed path from V to T for some T ∈ T.

The elements of V are called vertices. The elements of V \ (S∪T) are the intermediate vertices.
We denote the set of incoming and outgoing edges of a V ∈ V by in(V ) and out(V ), respectively.
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Nodes operations and network codes

The edges of a network N can carry precisely one symbol from a finite set A , the alphabet.

Definition

A network code F for N is a family of functions {FV : V ∈ V \ (S∪T)}, where

FV : A |in(V )|→A |out(V )| for all V ∈ V \ (S∪T).

ACHTUNG! This definition is not good (yet).

Let a ∈A and FV (a) = (b,c) ∈A 2 V
a

b c

c b

The edges of N can be partially ordered: ei � ej is there exists a path in N of the form

· · ·ei ej

Theorem

The order � can be extended to a total order.

We fix such a total oder and denote it by ≤. This resolves the ambiguity.
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Network channels

Let (N ,A) be a network with an adversary. Let A be the network alphabet.

S = {S1, ...,SN} is the set of network sources.

J ⊆ {1, ...,N} is a set of source indices, SJ = {Si | i ∈ J}.
F is a network code.

The sources {Si | i /∈ J} transmit fixed messages x ∈∏i /∈J A |out(Si )|.

E ′ ⊆ E is a non-empty set of edges.

The channel

ΩJ
F [A;SJ → E ′ | x ] : ∏

i∈J
A |out(Si )| 99K A |E ′|

describes the transfer

...

ΩJ
F [A;SJ → E ′ | x]

E ′

SJ

Special case: E ′ = in(T ), where T ∈ T is a terminal.

Alberto Ravagnani (UCD) Adversarial Network Coding Paris, Dec. 2018 11 / 20



Network channels

Let (N ,A) be a network with an adversary. Let A be the network alphabet.

S = {S1, ...,SN} is the set of network sources.

J ⊆ {1, ...,N} is a set of source indices, SJ = {Si | i ∈ J}.
F is a network code.

The sources {Si | i /∈ J} transmit fixed messages x ∈∏i /∈J A |out(Si )|.

E ′ ⊆ E is a non-empty set of edges.

The channel

ΩJ
F [A;SJ → E ′ | x ] : ∏

i∈J
A |out(Si )| 99K A |E ′|

describes the transfer

...

ΩJ
F [A;SJ → E ′ | x]

E ′

SJ

Special case: E ′ = in(T ), where T ∈ T is a terminal.

Alberto Ravagnani (UCD) Adversarial Network Coding Paris, Dec. 2018 11 / 20



Network channels

Let (N ,A) be a network with an adversary. Let A be the network alphabet.

S = {S1, ...,SN} is the set of network sources.

J ⊆ {1, ...,N} is a set of source indices, SJ = {Si | i ∈ J}.
F is a network code.

The sources {Si | i /∈ J} transmit fixed messages x ∈∏i /∈J A |out(Si )|.

E ′ ⊆ E is a non-empty set of edges.

The channel

ΩJ
F [A;SJ → E ′ | x ] : ∏

i∈J
A |out(Si )| 99K A |E ′|

describes the transfer

...

ΩJ
F [A;SJ → E ′ | x]

E ′

SJ

Special case: E ′ = in(T ), where T ∈ T is a terminal.

Alberto Ravagnani (UCD) Adversarial Network Coding Paris, Dec. 2018 11 / 20



Network channels

Let (N ,A) be a network with an adversary. Let A be the network alphabet.

S = {S1, ...,SN} is the set of network sources.

J ⊆ {1, ...,N} is a set of source indices, SJ = {Si | i ∈ J}.
F is a network code.

The sources {Si | i /∈ J} transmit fixed messages x ∈∏i /∈J A |out(Si )|.

E ′ ⊆ E is a non-empty set of edges.

The channel

ΩJ
F [A;SJ → E ′ | x ] : ∏

i∈J
A |out(Si )| 99K A |E ′|

describes the transfer

...

ΩJ
F [A;SJ → E ′ | x]

E ′

SJ

Special case: E ′ = in(T ), where T ∈ T is a terminal.

Alberto Ravagnani (UCD) Adversarial Network Coding Paris, Dec. 2018 11 / 20



Example

Consider the following network N with alphabet A .

An adversary A is able to corrupt at most one of the values of the dotted edges of N .

V T

S1

S2

e1
e2

e3

e4

e5

e6

e7

A network code F for N is the assignment of a function FV : A 3→A 4.

Let J := {1}, and assume that S2 emits a fixed element x ∈A . Let us describe

ΩJ
F [A;SJ → in(T ) | x].

Remark: we have to say what ΩJ
F [A;S→ in(T )](x1,x2) ⊆A 4 is for (x1,x2) ∈A 2.

If (x1,x2) ∈A 2, and z := FV (x1,x2,x) ∈A 4, then

ΩJ
F [A;S→ in(T )](x1,x2) = {y ∈A 4 | y2 = z2 and dH(y ,z)≤ 1}.
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Capacity region

Definition

N a network with N sources S = {S1, ...,SN}.
T is the set of terminals.

A is an adversary.

The (one shot) capacity region of (N ,A) is the set

R(N ,A) ⊆ RN
≥0

of all the N-tuples (α1, ...,αN) for which there exist:

a network code F for N

non-empty sets Ci ⊆A |out(Si )|, for 1≤ i ≤N

with the following properties:

1 log|A | |Ci |= αi ,
2 C = C1×·· ·×CN is a good code for each channel ΩF [A;S→ in(T )], T ∈ T.

We say that such a pair (F ,C ) achieves the rate (α1, ...,αN) in one shot.

These conditions guarantee that the sources can transmit in one shot to each of the sinks
α1 + · · ·+ αN alphabet symbols, αi of which are emitted by Si , for 1≤ i ≤N.
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Other capacities

We study various notions of capacity region:

(one shot) capacity region, modeling one network use;

zero-error capacity region, modeling multiple uses of the network;

compound zero-error capacity region, modeling certain restrictions on the adversaries.
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Decomposition idea

Let (N ,A) be a network with an adversary. Let A be the network alphabet.

S = {S1, ...,SN} the sources, J ⊆ {1, ...,N} and SJ = {Si | i ∈ J}.
F is a network code.

The sources {Si | i /∈ J} transmit fixed messages x ∈∏i /∈J A |out(Si )|.

E ′ ⊆ E is an edge-cut that separates SJ from T ∈ T.

T

...

ΩJ
F [SJ → E ′ | x]

Ω[A;E ′→ E ′]

ΩJ
F [E ′→ T | x]

E ′

SJ

Ω[A;E ′→ E ′] : A |E ′ | 99K A |E ′|

C1

(
ΩJ

F [A;SJ → T | x]
)
≤ C1

(
ΩJ

F [SJ → E ′ | x] � Ω[A;E ′→ E ′] � ΩJ
F [E ′→ T | x]

)
Proposition (R., Kschischang)

C1(Ω1 �Ω2 �Ω3)≤min3
i=1 C1(Ωi ). Therefore C1

(
ΩJ

F [A;SJ → T | x]
)
≤ C1 (Ω[A;E ′→ E ′]).
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Remarks

T

...

ΩJ
F [SJ → E ′ | x]

Ω[A;E ′→ E ′]

ΩJ
F [E ′→ T | x]

E ′

SJ

This can be made rigorous.

Using channel operations, this decomposition idea can be extended to:

I zero-error capacity,
I compound zero-error capacity.

This allows to port bounds for channels Ω : A n 99K A n to networks in a systematic way.

This applies to single source and multiple sources networks.

We study also erasure adversaries (alphabet extensions).
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Bounds

Theorem (R., Kschischang)

Let N be a network with N sources S = {S1, ...,SN} and set of terminals T. Set I := {1, ...,N}.

Denote by A an aversary:

having access to all the network edges E ,

able to corrupt at most t of them, and erase up to e of them.

For all (α1, ...,αN) ∈R(N ,A) and for all non-empty J ⊆ I we have

∑
i∈J

αi ≤min
T∈T

max{0,min-cut(SJ ,T )−2t−e}

and

∑
i∈J

αi ≤min
T∈T

max

0,min-cut(SJ ,T )− log|A |

 t ′

∑
h=0

(
min-cut(SJ ,T )

h

)
(|A |−1)h

 , t ′ := bt +e/2c.

These are obtained by “porting” the Singleton and the Hamming bounds, respectively.

Remark: any other bound from classical Coding Theory can be ported.
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Bounds

Theorem (R., Kschischang)

Let N be a network with N sources S = {S1, ...,SN} and set of terminals T. Set I := {1, ...,N}.

Denote by A a set of L aversaries A1, ...,AL such that:

adversary ` has access to E` ⊆ E for all 1≤ `≤ L,

the E`’s are pairwise disjoint,

adversary ` is able to corrupt at most t` edges, and erase at most e` edges.

For all (α1, ...,αN) ∈R(N ,A) and for all non-empty J ⊆ I we have

∑
i∈J

αi ≤min
T∈T

min

{
|E ′|−

L

∑
`=1

min
{

2t` +e`, |E ′ ∩E`|
}

: E ′ ⊆ E is a cut between SJ and T

}
.
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adversary ` is able to corrupt at most t` edges, and erase at most e` edges.

For all (α1, ...,αN) ∈R(N ,A) and for all non-empty J ⊆ I we have

∑
i∈J

αi ≤min
T∈T

min

{
|E ′|−

L

∑
`=1

min
{

2t` +e`, |E ′ ∩E`|
}

: E ′ ⊆ E is a cut between SJ and T

}
.
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Other results

Similar bounds can be proved for:

I zero-error capacity region,
I compound zero-error capacity region.

These bounds apply to single source and multiple sources networks.

These bounds show that when the adversary is restricted, capacity cannot be achieved in
general with linear network coding.

We give capacity-achieving schemes for some adversarial scenarios.
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Lower bounds

Recall:

Theorem (R., Kschischang)

Let N be a network with N sources S = {S1, ...,SN} and set of terminals T. Set I := {1, ...,N}.
Denote by A an aversary:

having access to all the network edges E ,

able to corrupt at most t of them.

For all (α1, ...,αN ) ∈R(N ,A) and all /0 6= J ⊆ I we have ∑
i∈J

αi ≤min
T∈T

max{0,min-cut(SJ ,T )−2t}.

Theorem (R., Kschischang)

Under the same hypotheses, we have

R(N ,A)⊇

{
(a1, ...,aN) ∈ NN : ∑

i∈J
ai ≤min

T∈T
max{0, min-cut(SJ ,T )−2t} for all /0 6= J ⊆ I

}
,

provided that A = Fm
q , and q and m are sufficiently large.
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A different scheme

For N = 2 sources and 1 terminal, to achieve a rate (a1,a2) the previous scheme requires as
network alphabet

Fm
q where m = (a1−2t) · (a2−2t).

Theorem (R., Kschischang)

There exists a scheme (with efficient coding and decoding) for the same problem parameters that
requires as network alphabet

Fm
q where m = a1 +a2−2t.

Thank you very much!
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