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MacWilliams-type Identities

A classical result in coding theory:

Theorem (MacWilliams)

Let C ≤ Fn
q be a code with the Hamming metric. Then for all 0≤ j ≤ n we have

WH
j (C⊥) =

n

∑
i=0

j

∑
`=0

(−1)`(q−1)j−`
(
i

`

)(
n− i

j− `

)
WH

i (C ).

These identities are invertible.

Generalizations of this result have been extensively studied in various contexts:

association schemes

finite abelian groups

posets/lattices

Alberto Ravagnani (University College Dublin) Matrix Codes and Rook Theory March 2019



MacWilliams-type Identities

A classical result in coding theory:

Theorem (MacWilliams)

Let C ≤ Fn
q be a code with the Hamming metric. Then for all 0≤ j ≤ n we have

WH
j (C⊥) =

n

∑
i=0

j

∑
`=0

(−1)`(q−1)j−`
(
i

`

)(
n− i

j− `

)
WH

i (C ).

These identities are invertible.

Generalizations of this result have been extensively studied in various contexts:

association schemes

finite abelian groups

posets/lattices

Alberto Ravagnani (University College Dublin) Matrix Codes and Rook Theory March 2019



Group Characters

Definition

Let (G ,+) be a finite abelian group. The character group of G is

Ĝ = {group homomorphisms χ : G → C∗}

endowed with point-wise multiplication:

χ1 ·χ2 (g) = χ1(g) ·χ2(g) for all g ∈ G .

We focus on a special situation:

(G ,+) = (V ,+) is the additive group of a finite-dimensional linear space over Fq

V is endowed with a given scalar product 〈· ·〉

Remark

(V̂ , ·) has a natural structure of Fq-linear space via

aχ(v) = χ(av), a ∈ Fq , v ∈ V .

Moreover, dim(V ) = dim(V̂ ).
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Group Characters

We focus on a special situation:

(G ,+) = (V ,+) is the additive group of a finite-dimensional linear space over Fq

V is endowed with a given scalar product 〈· ·〉 : V ×V → Fq

Remark

〈· ·〉 can be used to identify the spaces (V ,+) and (V̂ , ·) as follows.

Fix a non-trivial character ξ : Fq → C∗ and let

ψξ : V → V̂ , ψξ (v)(w) = ξ (〈v ,w〉) for all v ,w ∈ V .

Theorem (Folklore)

ψξ is an Fq-isomorphism of linear spaces whenever ξ is non-trivial.

Different choices of ξ give different identifications. However, all the objects we are
interested in will not depend on the choice of ξ .
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Partitions

A partition P = {Pi}i∈I of V is invariant if aPi = Pi for all i ∈ I and a ∈ Fq \{0}.

Example

Partitioning the elements of Fnq according to their Hamming weight yields PH.

Definition

Let P = {Pi}i∈I be an invariant partition of V (Pi 6= /0 for all i ∈ I ).

The dual of P is the partition P̂ of V defined by the equivalence relation

w ∼ w ′ ⇐⇒ ∑
v∈Pi

ψξ (v)(w) = ∑
v∈Pi

ψξ (v)(w ′) for all i ∈ I .

(recall: ψξ : (V ,+)→ (V̂ , ·) Fq-isomorphism).

I am using ξ to define P̂. However,

Proposition

P̂ does not depend on ξ , if P is invariant.
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Partitions

DATA:

V an Fq-space of finite dimension

〈· ·〉 a scalar product on V

P = {Pi}i∈I an invariant partition of V

CONSTRUCTION: the dual partition P̂ = {Qj}j∈J of V (which is invariant as well)

Definition

A code is an Fq-subspace of V . Its dual is

C⊥ = {w ∈ V | 〈v ,w〉= 0 for all v ∈ C } ≤ V .

Define:

the P-distribution of C : P(C , i) = |C ∩Pi |, i ∈ I .

the P̂-distribution of C⊥: P̂(C⊥, j) = |C⊥∩Qj |, j ∈ J.

Under certain conditions, MacWilliams-type identities hold for the P- and P̂-partition.
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MacWilliams-type Identities

We say that P is Fourier-reflexive if |P|= |P̂| and self-dual if P̂ = P.

(self-dual =⇒ Fourier-reflexive)

Theorem (Generalized MacWilliams Identities)

Let P = {Pi}i∈I be invariant and Fourier-reflexive.

Let P̂ = {Qj}j∈J . Let C ≤ V be a code. We have

P̂(C⊥, j) =
1

|C | ∑
i∈I

K(P; i , j) ·P(C , i),

where K(P; i , j) are suitable numbers called Krawtchouk coefficients. Moreover, the
matrix of the K(P; i , j) is of size |I |× |J|= |I |× |I | and invertible.

Definition

K(P; i , j) = ∑
w∈Qj

ψξ (w)(v), where v is any vector in Pi .

Again, this does not depend on ξ for invariant partitions.
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MacWilliams-type Identities

Problems

Given V with 〈· ·〉,

Construct Fourier-reflexive partitions P

Describe P̂ and decide if P̂ = P (self-duality)

Compute K(P; i , j)

Theorem (Delsarte)

The rank partition on Fn×mq is self-dual of size m+ 1. Moreover,

K(Prk; i , j) =
m

∑
`=0

(−1)j−`qn`+(j−`2 )

[
m− `

m− j

]
q

[
m− i

`

]
q

.

We concentrate on the matrix space Fn×mq with n ≥m endowed with the trace product:

〈M,N〉= Tr(MNt).
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Other partitions

We study:

the row-space partition Prs

the pivot partition Ppiv

These are invariant partitions of Fn×m
q .

Results (Gluesing-Luerssen, R.):

Prs is self-dual

explicit formula for the Krawtchouk coefficients of Prs

the pivot partition Ppiv is Fourier-reflexive (not self-dual)

connection between the Krawtchouk coefficients of Ppiv and rook theory

notions of extremality from Prs and Ppiv, and properties of extremal codes

MacWilliams extension theorem fails for these partitions
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The pivot partition

Ppiv partitions the elements of Fn×m
q according to the pivot indices in the RRE form.

We have:

|Ppiv|=
m

∑
r=0

(
m

r

)
= 2m.

Example:

M =



1 • 0 0 •
0 0 1 0 •
0 0 0 1 •
0 0 0 0 0

0 0 0 0 0


piv(M) = (1,3,4).

Notation

Let Π = {(j1, ..., jr ) | 1≤ r ≤m, 1≤ j1 < j2 < · · ·< jr ≤m}∪{()}.

Then Ppiv = (Pλ )λ∈Π.

We treat the elements of Π as sets or as lists, depending on what is more convenient.

Alberto Ravagnani (University College Dublin) Matrix Codes and Rook Theory March 2019



The pivot partition

Ppiv partitions the elements of Fn×m
q according to the pivot indices in the RRE form.

We have:

|Ppiv|=
m

∑
r=0

(
m

r

)
= 2m.

Example:

M =



1 • 0 0 •
0 0 1 0 •
0 0 0 1 •
0 0 0 0 0

0 0 0 0 0


piv(M) = (1,3,4).

Notation

Let Π = {(j1, ..., jr ) | 1≤ r ≤m, 1≤ j1 < j2 < · · ·< jr ≤m}∪{()}.

Then Ppiv = (Pλ )λ∈Π.

We treat the elements of Π as sets or as lists, depending on what is more convenient.

Alberto Ravagnani (University College Dublin) Matrix Codes and Rook Theory March 2019



The pivot partition

Ppiv partitions the elements of Fn×m
q according to the pivot indices in the RRE form.

We have:

|Ppiv|=
m

∑
r=0

(
m

r

)
= 2m.

Example:

M =



1 • 0 0 •
0 0 1 0 •
0 0 0 1 •
0 0 0 0 0

0 0 0 0 0


piv(M) = (1,3,4).

Notation

Let Π = {(j1, ..., jr ) | 1≤ r ≤m, 1≤ j1 < j2 < · · ·< jr ≤m}∪{()}.

Then Ppiv = (Pλ )λ∈Π.

We treat the elements of Π as sets or as lists, depending on what is more convenient.

Alberto Ravagnani (University College Dublin) Matrix Codes and Rook Theory March 2019



The pivot partition

Theorem (Gluesing-Luerssen, R.)

Ppiv is Fourier-reflexive, but not self-dual (P̂piv 6= Ppiv).

How does P̂piv look like?

Theorem (Gluesing-Luerssen, R.)

P̂piv = Prpiv, the reverse pivot partition.

Prpiv partitions the elements of Fn×mq according to the pivot indices of the RRE form
computed from the right.

Computing the Krawtchouk coefficients is a different story...
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The pivot partition

Definition

A Ferrers diagram is a subset F ⊆ [n]× [m] that satisfies the following:

1 if (i , j) ∈F and j <m, then (i , j + 1) ∈F (right aligned),

2 if (i , j) ∈F and i > 1, then (i −1, j) ∈F (top aligned).

We represent a Ferrers diagram by its column lengths, F = [c1, . . . ,cm].

E.g.

F =

• • • •
• • •
• • •

•

= [1,3,3,4]

We denote by Fq[F ] the space of matrices supported on F , and let

Pr (F ) := {M ∈ Fq[F ] | rk(M) = r}.

We can express the Krawtchouk coefficients of Ppiv in terms of Pr (F ), for certain r and
for a suitable diagram F .
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The pivot partition

Using combinatorial tools (regular support functions):

Theorem (Gluesing-Luerssen, R.)

Let λ , µ ∈ Π. Set

σ = [m]\µ, λ ∩σ = (λα1 , . . . ,λαx ), µ \λ = (µβ1
, . . . ,µβy

).

Furthermore, set

zj = |{i ∈ [x ] | λαi < µβj
}| for j ∈ [y ], F = [z1, . . . ,zy ].

Then

K(Ppiv;λ ,µ) =
m

∑
t=0

(−1)|λ |−tqnt+(|λ |−t2 )
|λ∩σ |

∑
r=0

Pr (F )

[
|λ ∩σ |− r

t

]
q

.

Therefore, K(Ppiv;λ ,µ) can be expressed in terms of the rank-distribution of Fq(F ) for
a suitable F → rook theory
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q-Rook Polynomials

Definition

The q-rook polynomial associated with F and r ≥ 0 is

Rr (F ) = ∑
C∈NARr (F )

qinv(C ,F ) ∈ Z[q],

where:

NARr (F ) is the set of all placements of r non-attacking rooks on F (non-attacking
means that no two rooks are in the same column, and no two are in the same row)

inv(C ,F ) ∈ N is computed as shown on the blackboard

Theorem (Haglund)

For any Ferrers diagram Fand any r ≥ 0 we have

Pr (F ) = (q−1)r q|F |−r Rr (F )|q−1

in the ring Z[q,q−1].

Natural task: find an explicit expression for Rr (F ).
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q-Rook Polynomials

An explicit formula for Rr (F ):

Theorem (Gluesing-Luerssen, R.)

Let F = [c1, . . . ,cm] be an n×m-Ferrers diagram. For k ∈ [m] define ak = ck −k + 1.

For j ∈ [m] let σj ∈Q[x1, . . . ,xm] be the j th elementary symmetric polynomial in m
indeterminates (σ0 = 1, ..., σm = x1 · · ·xm).

Then

Rr (q) =
q(r+1

2 )−rm+area(F )(−1)m−r

(1−q)r ∏
m−r
k=1 (1−qk)

m

∑
t=m−r

(−1)tσm−t(q−a1 , . . . ,q−am )
m−r−1

∏
j=0

(1−qt−j ).

Combining this with Haglund’s theorem we find an explicit expression for Pr (F ).

Proof is technical.
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q-Rook Polynomials

A different approach: compute Pr (F ) directly. Notation: F = [c1, ...,cm].

Theorem (Gluesing-Luerssen, R.)

Pr (F ) = ∑
1≤i1<···<ir≤m

qrm−∑
r
j=1 ij

r

∏
j=1

(q
cij−j+1−1).

Proof is short.

But inverting Haglund’s theorem we also find a simple explicit formula for Rr (F )!

Corollary (Gluesing-Luerssen, R.)

Rr (F ) =

q∑
m
j=1 cj−rm ∑

1≤i1<···<ir≤m

r

∏
j=1

(q
ij+j−cij−1−qij )

(1−q)r
.
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q-Stirling Numbers

We can use these results to derive an explicit formula for the q-Stirling numbers of the
second kind. The latter are defined via the recursion

Sm+1,r = qr−1Sm,r−1 +
qr −1

q−1
Sm,r

with initial conditions S0,0(q) = 1 and Sm,r (q) = 0 for r < 0 or r >m.

Theorem (Garsia, Remmel)

Sm+1,m+1−r = Rr (F ),

where F = [1, ...,m] is the upper-triangular m×m Ferrers board.

Theorem (Gluesing-Luerssen, R.)

Sm+1,m+1−r =

q(m+1
2 )−rm

∑
1≤i1<···<ir≤m

r

∏
j=1

(qj−1−qij )

(1−q)r
for 1≤ r ≤m+ 1.

Thank you very much!
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