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A classical result in coding theory:
Let ¥ <Fg be a code with the Hamming metric. Then for all 0 <j < n we have
Hiooly ¥ & ¢ e (T [(P=1\ H
WiE) =) Y (D) a-1 (), ) Wi@)
i=0¢=0
These identities are invertible.
«O>» «Fr «Zr «E» = Q>
~ Alberto Ravagnani (University College Dublin) ~ Matrix Codes and Rook Theoy ~ March2019



MacWilliams-type Identities

A classical result in coding theory:

Theorem (MacWilliams)
Let ¥ < Fg be a code with the Hamming metric. Then for all 0 < j < n we have

e 1-E e () oo

These identities are invertible.

Generalizations of this result have been extensively studied in various contexts:

@ association schemes
o finite abelian groups

@ posets/lattices
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Let (G,+) be a finite abelian group. The character group of G is
G = {group homomorphisms ¥ : G — C*}
endowed with point-wise multiplication:

x1-%2 (g) = x1(g) - x2(g) forall geG.
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Group Characters

Definition

Let (G,+) be a finite abelian group. The character group of G is
G= {group homomorphisms y: G — C*}
endowed with point-wise multiplication:

We focus on a special situation:

x1-%2 (g) = x1(g) - x2(g) forall geG.

e (G,+)=(V,+) is the additive group of a finite-dimensional linear space over Fq
e V is endowed with a given scalar product (- -)
(\7,) has a natural structure of Fg-linear space via
ax(v) = x(av), aclky, ve V.
Moreover, dim(V) = dim(V).
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Group Characters

We focus on a special situation:

@ (G,+)=(V,+) is the additive group of a finite-dimensional linear space over Fq
@ V is endowed with a given scalar product (- -): Vx V = F,
(- ) can be used to identify the spaces (V,+) and (V,-) as follows.
Fix a non-trivial character & : Fg — C* and let
Ve VoV, ye(v)(w) =E((v,w)) forall viwe V.
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Group Characters

We focus on a special situation:

@ (G,+)=(V,+) is the additive group of a finite-dimensional linear space over Fq
@ V is endowed with a given scalar product (- ) : V x V = Fq
(- ) can be used to identify the spaces (V,+) and (\7,) as follows.
Fix a non-trivial character & : Fg — C* and let
Ve VoV, ye(v)(w)=E((v,w)) forall v,we V.
Theorem (Folklore)

Vg is an Fg-isomorphism of linear spaces whenever & is non-trivial.

Alberto Ravagnani (University College Dublin)

Different choices of & give different identifications. However, all the objects we are
interested in will not depend on the choice of &.
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A partition & ={P;}ic of V is invariant if aP; = P; for all i € | and a € Fq\ {0}.

Partitioning the elements of g according to their Hamming weight yields M.
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Partitions

A partition & ={P;}ic of V is invariant if aP; = P; for all i € | and a € Fq\ {0}.

Partitioning the elements of g according to their Hamming weight yields PH.

Definition
Let & = {P;};c; be an invariant partition of V  (P; #0 for all i € ).

The dual of &2 is the partition Z of V defined by the equivalence relation

wrw = Zl[fg(v) w) = Zl[fg(v) (w') foralljel.

veP; veP;

(recall: yg : (V,+)— (V. Fg-isomorphism).

o S = E T wae
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Partitions

A partition & ={P;}ic of V is invariant if aP; = P; for all i € | and a € Fq\ {0}.

Partitioning the elements of g according to their Hamming weight yields PH.

Definition
Let & = {P;};c; be an invariant partition of V  (P; #0 for all i € ).
The dual of &2 is the partition Z of V defined by the equivalence relation

wrw = Zl[fg(v) w) = Zl[fg(v) (w') foralljel.

veP; veP;

(recall: yg : (V,+)— (V. Fg-isomorphism).

A | am using & to define 2.

[m] = = = = Q>

Alberto Ravagnani (University College Dublin) Matrix Codes and Rook Theory March 2019



Partitions

A partition & ={P;}ic of V is invariant if aP; = P; for all i € | and a € Fq\ {0}.

Partitioning the elements of g according to their Hamming weight yields PH.

Definition
Let & = {P;};c; be an invariant partition of V  (P; #0 for all i € ).

The dual of &2 is the partition Z of V defined by the equivalence relation

wrw = Zl[fg(v) w) = Zl[fg(v) (w') foralljel.

veP; veP;

(recall: yg : (V,+)— (V. Fg-isomorphism).

A | am using & to define 2. However,
Proposition

Z does not depend on &, if 2 is invariant.

=] F = = = .
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DATA:
@ V an Fg-space of finite dimension
@ (- -) a scalar product on V
o & ={P;}ic an invariant partition of V

CONSTRUCTION: the dual partition 2 = {Qj}jey of V (which is invariant as well)
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Partitions

DATA:

@ V an Fg-space of finite dimension

@ (- -) a scalar product on V

o & ={P;}ic; an invariant partition of V
CONSTRUCTION: the dual partition 22 = {Qj}jes of V' (which is invariant as well)
Definition
A code is an [Fg-subspace of V. Its dual is

¢t={weV|(v,w)=0forallve €} <V.

Define:

o the Z-distribution of ¢: P(¢,i)=|¢NP;|, iel.

o the Z-distribution of ¥-: Z(%¢+,j)=|6-NQj|, jeJ.

Under certain conditions, MacWilliams-type identities hold for the &?- and ?)’\%partition.
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We say that & is Fourier-reflexive if | 22| = |@7| and self-dual if 2 = 2.
(self-dual = Fourier-reflexive)
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MacWilliams-type Identities

We say that # is Fourier-reflexive if | 2| = | 2| and self-dual if 7 = 2.

(self-dual = Fourier-reflexive)

Theorem (Generalized MacWilliams Identities)

Let & = {P;};c; be invariant and Fourier-reflexive.
Let 2 = {Qj}jey. Let € <V be a code. We have

1

P(et,)) =
(€.J) 7]

ZK(@;/,J’)u@(%, i),

iel

where K(Z7;1,j) are suitable numbers called Krawtchouk coefficients. Moreover, the
matrix of the K(22;i,j) is of size |I| x |J| = |I| x |I| and invertible.
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MacWilliams-type Identities

We say that # is Fourier-reflexive if | 2| = | 2| and self-dual if 7 = 2.

(self-dual = Fourier-reflexive)

Theorem (Generalized MacWilliams Identities)
Let & = {P;};c; be invariant and Fourier-reflexive.
Let 27 = {Qj}jey. Let € <V be a code. We have

1

P(eh.0)=
()=

ZK(@;/,J’)W(%, i),

il

where K(Z7;1,j) are suitable numbers called Krawtchouk coefficients. Moreover, the
matrix of the K(22;i,j) is of size |I| x |J| = |I| x |I| and invertible.

Definition

K(2:ij)=Y, Ve(w)(v), where v is any vector in P;.
weQ;

Again, this does not depend on & for invariant partitions.
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Given V with (- -),

o Construct Fourier-reflexive partitions &7
o Describe Z and decide if Z = 2 (self-duality)
o Compute K(Z;1,j)
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MacWilliams-type Identities

Given V with (- ),

o Construct Fourier-reflexive partitions &
o Describe Z and decide if Z = 2 (self-duality)
o Compute K(Z;1,j)

Theorem (Delsarte)

The rank partition on IFgX’” is self-dual of size m+1. Moreover,

K(#™i)= Y (-1p g é)[ } [’""'] :
=0 m—j t ],

We concentrate on the matrix space IFg*™ with n > m endowed with the trace product:
(M, N) = Tr(MN?).

or <& = = z 9ace
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We study:
@ the row-space partition &'
@ the pivot partition 2PV

These are invariant partitions of ng”’.
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Other partitions

We study:

@ the row-space partition &'

e the pivot partition 2PV

These are invariant partitions of Fg*™.

Results (Gluesing-Luerssen, R.):

o ' is self-dual
explicit formula for the Krawtchouk coefficients of &'

the pivot partition &PV is Fourier-reflexive (not self-dual)

°

°

@ connection between the Krawtchouk coefficients of 2PV and rook theory

@ notions of extremality from 22" and 2PV, and properties of extremal codes
°

MacWilliams extension theorem fails for these partitions
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FLED)

()=
r=o \ T
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We have:
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PPV partitions the elements of Fg*™ according to the pivot indices in the RRE form.

We have:
. m m
o= § (") <2m
r=o \ T
Example:
1 ¢ 0 0 o
0 01 0 e
M=]0 0 0 1 e piv(M) = (1,3,4).
0 0 0 0O
0 0 0 0O
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The pivot partition

PPV partitions the elements of IFQX’" according to the pivot indices in the RRE form.

We have:

Example:

<
Il
© o o o =~

O O O O e

PS> (T) =2m,

r=0
0 0 o
1 0 e
0 1 e piv(M) = (1,3,4).
0 0 O
0 0 O

Let M={(1,.Jr)|1<r<m, 1<ji<jp<---<jr<m}tU{()}.

Then

PPV = (P3)ren-

We treat the elements of [ as sets or as lists, depending on what is more convenient.

Alberto Ravagnani (University College Dublin)
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PV is Fourier-reflexive, but not self-dual (Z2PV £ ZPIV).
How does &PV look like?
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PV is Fourier-reflexive, but not self-dual (QZP'V # PPV,
How does Z2PV look like?
PPV = PPV the reverse pivot partition.
PPV partitions the elements of ng”’ according to the pivot indices of the RRE form
computed from the right.
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PV is Fourier-reflexive, but not self-dual (QP'V # PPV,
How does Z2PV look like?
PPV = PPV the reverse pivot partition.
PPV partitions the elements of ngm according to the pivot indices of the RRE form
computed from the right.

Computing the Krawtchouk coefficients is a different story.
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Thesetpariton
Definition
A Ferrers diagram is a subset .% C [n] x [m] that satisfies the following:
Q if (i,j) €% and j < m, then (i,j+1) € .# (right aligned),
Q if (i,j) €% and i > 1, then (i—1,j) € # (top aligned).
We represent a Ferrers diagram by its column lengths, % = [cy,...,cm].
E.g.
L]

= [1,3,3,4]
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The pivot partition

Definition
A Ferrers diagram is a subset .% C [n] x [m] that satisfies the following:

Q if (i,j) € Z and j < m, then (i,j+1) € # (right aligned),
Q if(i,j)e F and i>1, then (i—1,j) €.Z (top aligned).

We represent a Ferrers diagram by its column lengths, % = [c1,...,Cm].
E.g.
[ ] [ ) [ ) [ ]
[ ) [ ] [ ]
T = = [1,3,3,4]
] L] o

We denote by Fq[.#] the space of matrices supported on .#, and let

P(F) = {M e F [ F]| k(M) = r}.
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The pivot partition
Definition
A Ferrers diagram is a subset .% C [n] x [m] that satisfies the following:

Q if (i,j) € Z and j < m, then (i,j+1) € # (right aligned),
Q if(i,j)e F and i>1, then (i—1,j) €.Z (top aligned).

We represent a Ferrers diagram by its column lengths, % = [c1,...,Cm].
E.g.
[ ] [ ) [ ) [ ]
[ ) [ ] [ ]
T = = [1,3,3,4]
] L] o

L]
We denote by Fq[.#] the space of matrices supported on .#, and let
P(ZF) :={M e Fq[F]| rk(M)=r}.
We can express the Krawtchouk coefficients of &PV in terms of P,(.%), for certain r and

for a suitable diagram .%.
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Using combinatorial tools (regular support functions):
Let A,u €. Set
o =[m]\u, ANo = Aoy, ay)s BA\A = (up,,---,Mp,)-
Furthermore, set
zi={i€[x]| Aq; <mp} forje€ly],

F =|z1,...,2/]
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Using combinatorial tools (regular support functions):
Let A,u €. Set
o =[m]\u, ANo = Aoy, ay)s
Furthermore, set
Then

BA\A = (up,,---,1p,)-
zi={i€[x]| Ay <[,Lﬁj}| for j € [y],

ﬁ': [Z]_,... Zy]
m A|—t |
K(,@piv;l,[.l) — Z (_1)|M—tq"t+(| |2 )
t=0

Ano|
Y. Pi(F)

[|7ma| —r:|
r=0 t q

«O> (Fr «E»r < > Q>



The pivot partition

Using combinatorial tools (regular support functions):

Theorem (Gluesing-Luerssen, R.)
Let A,uenll. Set

G:[m]\u7 Ama:(l%v"wa’ax% “\A‘:(“ﬁN?uﬂy)

Furthermore, set

zi={i € [x] [ Ay <mg;}| forj€ly], F =z1,...,2)]
Then

m flc [Ano| _,
K(ZPV; A 1) = Z(—l)m‘*tq”f‘*‘(”z) Y P(%) {Ilm:l } .
t=0 r=0 q

Therefore, K(PV;1,11) can be expressed in terms of the rank-distribution of Fq(.%) for
a suitable #  — rook theory
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g-Rook Polynomials

Definition

The g-rook polynomial associated with .% and r >0 is

R(F) = gd™(cF) e 7[q],
CENAR,(F)

where:

o NAR/(.#) is the set of all placements of r non-attacking rooks on .%# (non-attacking
means that no two rooks are in the same column, and no two are in the same row)

e inv(C,.Z) € N is computed as shown on the blackboard
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g-Rook Polynomials

Definition

The g-rook polynomial associated with .% and r >0 is

R(F) = gd™F) e 7[q),
CENAR,(F)

where:

o NAR/(.#) is the set of all placements of r non-attacking rooks on .%# (non-attacking
means that no two rooks are in the same column, and no two are in the same row)

e inv(C,.Z) € N is computed as shown on the blackboard

Theorem (Haglund)

For any Ferrers diagram #and any r > 0 we have
PUF) = (a-1)" 471" R(F) g
in the ring Z[q,q71].

Natural task: find an explicit expression for R,(.%).
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g-Rook Polynomials

An explicit formula for R.(.%):
Theorem (Gluesing-Luerssen, R.)

Let % =[ci,...,cm] be an nx m-Ferrers diagram. For k € [m] define ay = ¢, — k+ 1.

For j € [m] let 0; € Q[xq,...,xm] be the jt" elementary symmetric polynomial in m
indeterminates (6p =1, ..., Om = X1+ Xm)-
Then
r+1 T
q( x )—rm+area(</')(71)m—r m . B 3 m—r—1 o
Ri(q) = ~ (“1)fome(a™,...g™) [] (1—q*).
g a9 o, 0o I
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g-Rook Polynomials

An explicit formula for R.(.%):
Theorem (Gluesing-Luerssen, R.)

Let % =[ci,...,cm] be an nx m-Ferrers diagram. For k € [m] define ay = ¢, — k+ 1.

For j € [m] let 0; € Q[xq,...,xm] be the jt" elementary symmetric polynomial in m
indeterminates (6p =1, ..., Om = X1+ Xm)-
Then
r+1 T
q( x )—rm+area(</')(71)m—r m . B 3 m—r—1 o
Ri(q) = ~ (“1)fome(a™,...g™) [] (1—q*).
g a9 o, 0o I

Combining this with Haglund's theorem we find an explicit expression for P,(.%).

Proof is technical.
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Jj=1

«O>» «Fr «Zr «E» = Q>

A different approach: compute P,(.%#) directly. Notation: % = [cy,...,Cm].
r H i i
P(F)= Y gm0 [[(q% 7 -1).
1<ih<-<ir<m
Proof is short.



A different approach: compute P,(.%#) directly. Notation: % = [cy,...,Cm].
r H i i
P(F)= Y gm0 [[(q% 7 -1).
1<ih<-<ir<m
Proof is short.

j=1

gt

nG=Lin

But inverting Haglund's theorem we also find a simple explicit formula for R,(.%)!

X
Rr(y) =

H( fiti—¢i;—
1<p<-<iy<m j=

L_gi)

(1-a) '
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Smt1r=q

We can use these results to derive an explicit formula for the g-Stirling numbers of the
second kind. The latter are defined via the recursion

1
1 Sm,r

«O>» «Fr «Zr «E» Q>

r p—
Sm,r—l + ul —
with initial conditions Sgo(gq) =1 and S, ,(q) =0 for r <0 or r > m.



We can use these results to derive an explicit formula for the g-Stirling numbers of the
second kind. The latter are defined via the recursion

Smt1r=q

r—1
1Sm,r—l + ul Sm,r
g—1
with initial conditions Sgo(gq) =1 and S, ,(q) =0 for r <0 or r > m.
Sm+1,m+1—r = Rr(y)>
where . =[1,...,m]| is the upper-triangular m x m Ferrers board.
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We can use these results to derive an explicit formula for the g-Stirling numbers of the
second kind. The latter are defined via the recursion

g
Smt1,r= q-

1Sm r—1 + Sm r
q-—
with initial conditions Sgo(q) =1 and S, ,(q) =0 for r<Oorr>m

Sm+1,m+1—r = Rr(y)>
where Z =[1,...,m] i i

m)] is the upper-triangular m x m Ferrers board

q(m;l)_rm

H(qf =
IS 1<h<-<ip<m j=
m+1,m+1—r — (1 — q),

for1<r<m-+1.
«O>» «Fr» «=» < » Q¥
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g-Stirling Numbers

We can use these results to derive an explicit formula for the g-Stirling numbers of the
second kind. The latter are defined via the recursion

q -1
qg—1
with initial conditions S o(q) =1 and Sy, (q) =0 for r <0 or r > m.

Sm+1,r = qr715m~r71 + Sm,r

Theorem (Garsia, Remmel)

5m+1.m+17r = Rr(tg)a

where % = [1,...,m] is the upper-triangular m x m Ferrers board.

Theorem (Gluesing-Luerssen, R.)

Y @)

1<p<-<i,<m j=1

fori<r<m+1.
(1-q)

Smilmil—r=

Thank you very much!
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